Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Clin Microbiol ; 58(11)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32878952

RESUMO

Ancestral genetic exchange between members of many important bacterial pathogen groups has resulted in phylogenetic relationships better described as networks than as bifurcating trees. In certain cases, these reticulated phylogenies have resulted in phenotypic and molecular overlap that challenges the construction of practical approaches for species identification in the clinical microbiology laboratory. Burkholderia cepacia complex (Bcc), a betaproteobacteria species group responsible for significant morbidity in persons with cystic fibrosis and chronic granulomatous disease, represents one such group where network-structured phylogeny has hampered the development of diagnostic methods for species-level discrimination. Here, we present a phylogeny-informed proteomics approach to facilitate diagnostic classification of pathogen groups with reticulated phylogenies, using Bcc as an example. Starting with a set of more than 800 Bcc and Burkholderia gladioli whole-genome assemblies, we constructed phylogenies with explicit representation of inferred interspecies recombination. Sixteen highly discriminatory peptides were chosen to distinguish B. cepacia, Burkholderia cenocepacia, Burkholderia multivorans, and B. gladioli and multiplexed into a single, rapid liquid chromatography-tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM) assay. Testing of a blinded set of isolates containing these four Burkholderia species demonstrated 50/50 correct automatic negative calls (100% accuracy with a 95% confidence interval [CI] of 92.9 to 100%), and 70/70 correct automatic species-level positive identifications (100% accuracy with 95% CI 94.9 to 100%) after accounting for a single initial incorrect identification due to a preanalytic error, correctly identified on retesting. The approach to analysis described here is applicable to other pathogen groups for which development of diagnostic classification methods is complicated by interspecies recombination.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Burkholderia cepacia , Burkholderia , Infecções por Burkholderia/diagnóstico , Complexo Burkholderia cepacia/genética , Cromatografia Líquida , Humanos , Filogenia , Proteômica , Espectrometria de Massas em Tandem
2.
Crit Care ; 24(1): 391, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620175

RESUMO

BACKGROUND: Acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) are associated with high in-hospital mortality. However, in cohorts of ARDS patients from the 1990s, patients more commonly died from sepsis or multi-organ failure rather than refractory hypoxemia. Given increased attention to lung-protective ventilation and sepsis treatment in the past 25 years, we hypothesized that causes of death may be different among contemporary cohorts. These differences may provide clinicians with insight into targets for future therapeutic interventions. METHODS: We identified adult patients hospitalized at a single tertiary care center (2016-2017) with AHRF, defined as PaO2/FiO2 ≤ 300 while receiving invasive mechanical ventilation for > 12 h, who died during hospitalization. ARDS was adjudicated by multiple physicians using the Berlin definition. Separate abstractors blinded to ARDS status collected data on organ dysfunction and withdrawal of life support using a standardized tool. The primary cause of death was defined as the organ system that most directly contributed to death or withdrawal of life support. RESULTS: We identified 385 decedents with AHRF, of whom 127 (33%) had ARDS. The most common primary causes of death were sepsis (26%), pulmonary dysfunction (22%), and neurologic dysfunction (19%). Multi-organ failure was present in 70% at time of death, most commonly due to sepsis (50% of all patients), and 70% were on significant respiratory support at the time of death. Only 2% of patients had insupportable oxygenation or ventilation. Eighty-five percent died following withdrawal of life support. Patients with ARDS more often had pulmonary dysfunction as the primary cause of death (28% vs 19%; p = 0.04) and were also more likely to die while requiring significant respiratory support (82% vs 64%; p <  0.01). CONCLUSIONS: In this contemporary cohort of patients with AHRF, the most common primary causes of death were sepsis and pulmonary dysfunction, but few patients had insupportable oxygenation or ventilation. The vast majority of deaths occurred after withdrawal of life support. ARDS patients were more likely to have pulmonary dysfunction as the primary cause of death and die while requiring significant respiratory support compared to patients without ARDS.


Assuntos
Síndrome do Desconforto Respiratório/etiologia , Insuficiência Respiratória/etiologia , Idoso , Estudos de Coortes , Feminino , Humanos , Hipóxia/fisiopatologia , Masculino , Michigan , Pessoa de Meia-Idade , Estudos Prospectivos , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/mortalidade , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/mortalidade , Estudos Retrospectivos , Fatores de Risco
3.
Am J Respir Crit Care Med ; 197(6): 708-727, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087211

RESUMO

Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.


Assuntos
Pneumopatias/imunologia , Pneumopatias/fisiopatologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/imunologia , Infecção Hospitalar/imunologia , Infecção Hospitalar/fisiopatologia , Infecção Hospitalar/terapia , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Pneumopatias/terapia , Infecções por Pseudomonas/terapia
4.
Case Rep Rheumatol ; 2020: 8886324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133718

RESUMO

Immune-mediated necrotizing myopathy (IMNM) is a rare form of idiopathic immune myopathy (IIM) that requires immunotherapies, including immunosuppressive medications, if severe. There is a paucity of data regarding outcomes of patients with immune-mediated polymyositis who continue immunosuppressive medications during the COVID-19 pandemic. This is the first reported case of COVID-19 in a patient with IMNM. Despite being on two immunotherapies, having risk factors, and having radiographic abnormalities on chest X-ray, the patient had an unremarkable COVID-19 course. He was discharged from the emergency department with a 7-day course of azithromycin and quickly resumed his immunotherapies, but he experienced a flare in his myositis. The 14-week follow-up computed tomography (CT) was negative for residual pneumonitis or fibrosis. More data are needed regarding management and prognosis of patients with connective tissue diseases who become infected with SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA