Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 184: 106407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995347

RESUMO

The present review explores the role of xanthine oxidoreductase (XOR) in the development and progression of chronic kidney disease (CKD). Human XOR is a multi-level regulated enzyme, which has many physiological functions, but that is also implicated in several pathological processes. The main XOR activities are the purine catabolism, which generates uric acid, and the regulation of cell redox state and cell signaling, through the production of reactive oxygen species. XOR dysregulation may lead to hyperuricemia and oxidative stress, which could have a pathogenic role in the initial phases of CKD, by promoting cell injury, hypertension, chronic inflammation and metabolic derangements. Hypertension is common in CKD patients and many mechanisms inducing it (upregulation of renin-angiotensin-aldosterone system, endothelial dysfunction and atherosclerosis) may be influenced by XOR products. High XOR activity and hyperuricemia are also risk factors for obesity, insulin resistance, type 2 diabetes and metabolic syndrome that are frequent CKD causes. Moreover, CKD is common in patients with gout, which is characterized by hyperuricemia, and in patients with cardiovascular diseases, which are associated with hypertension, endothelial dysfunction and atherosclerosis. Although hyperuricemia is undoubtedly related to CKD, controversial findings have been hitherto reported in patients treated with urate-lowering therapies.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Hipertensão , Hiperuricemia , Insuficiência Renal Crônica , Humanos , Hiperuricemia/tratamento farmacológico , Purinas , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico , Xantina Desidrogenase/metabolismo
2.
Microb Pathog ; 142: 104035, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017957

RESUMO

Chlamydia persistence is a viable, but non-cultivable, growth stage, resulting in a long-term relationship with the infected host cell. In vitro, this condition can be induced by different stressor agents, including beta-lactam antibiotics, as penicillin. The aim of this study was to get new insights into the interactions between Chlamydia trachomatis (serovars D and L2) and the epithelial host cells (HeLa) during persistence condition. In particular, we evaluated the following aspects, by comparing the normal chlamydial development cycle with penicillin-induced persistence: (i) cell survival/death, (ii) externalization of phosphatidylserine, (iii) caspase 1 and caspase 3/7 activation, and (iv) reactive oxygen species (ROS) production by the infected cells. At 72 h post-infection, the cytotoxic effect displayed by CT was completely abolished for both serovars and for all levels of multiplicity of infection only in the cells with aberrant CT inclusions. At the same time, CT was able to switch off the exposure of the lipid phosphatidylserine on the surface of epithelial cells and to strongly inhibit the activation of caspase 1 and caspase 3/7 only in penicillin-treated cells. Forty-eight hours post-infection, CT elicited a significant ROS expression both in case of a normal cycle and in case of persistence. However, serovar L and penicillin-free infection activated a higher ROS production compared to serovar D and to penicillin-induced persistence, respectively. In conclusion, we added knowledge to the cellular dynamics taking place during chlamydial persistence, demonstrating that CT creates a suitable niche to survive, switching off signals able to activate phagocytes/leukocytes recruitment. Nevertheless, persistent CT elicits ROS production by the infected cells, potentially contributing to the onset of chronic inflammation and tissue damages.

3.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769921

RESUMO

Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 µM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.


Assuntos
Neoplasias do Colo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Palmíticos/metabolismo , Fosfolipídeos/química , Células CACO-2 , Membrana Celular/química , Membrana Celular/metabolismo , Ésteres do Colesterol/biossíntese , Ésteres do Colesterol/química , Ésteres do Colesterol/metabolismo , Neoplasias do Colo/química , Neoplasias do Colo/patologia , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Ômega-3/biossíntese , Humanos , Ácidos Linoleicos/química , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacologia , Linoleoil-CoA Desaturase/química , Microscopia de Fluorescência , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Ácidos Palmíticos/química , Ácidos Palmíticos/farmacologia , Fosfolipídeos/biossíntese
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(8): 2557-2565, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29733945

RESUMO

Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use.


Assuntos
Endotélio Vascular/metabolismo , Síndrome Metabólica/metabolismo , Ácido Úrico/metabolismo , Xantina Desidrogenase/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia , Animais , Diferenciação Celular , Endotélio Vascular/patologia , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Hiperuricemia/metabolismo , Hiperuricemia/patologia , Síndrome Metabólica/patologia
5.
Molecules ; 22(2)2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28134797

RESUMO

The enzymes called ribosome-inactivating proteins (RIPs) that are able to depurinate  nucleic acids and arrest vital cellular functions, including protein synthesis, are still a frontline  research field, mostly because of their promising medical applications. The contributions of Stirpe  to the development of these studies has been one of the most relevant. After a short biographical  introduction, an overview is offered of the main results obtained by his investigations during last  55 years on his main research lines: hyperuricaemia, xanthine oxidoreductase and RIPs.


Assuntos
Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Proteínas de Plantas/farmacologia , Pesquisa , Proteínas Inativadoras de Ribossomos/farmacologia , Xantina Desidrogenase/metabolismo , Animais , Pessoas Famosas , Frutose/metabolismo , História do Século XX , Humanos , Hiperuricemia/diagnóstico , Hiperuricemia/etiologia , Itália , Pesquisa/história , Ricina/farmacologia , Pesquisa Translacional Biomédica/história
6.
Molecules ; 21(12)2016 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-27898041

RESUMO

This review provides a historical overview of the research on plant ribosome-inactivating proteins (RIPs), starting from the first studies at the end of eighteenth century involving the purification of abrin and ricin, as well as the immunological experiments of Paul Erlich. Interest in these plant toxins was revived in 1970 by the observation of their anticancer activity, which has given rise to a large amount of research contributing to the development of various scientific fields. Biochemistry analyses succeeded in identifying the enzymatic activity of RIPs and allowed for a better understanding of the ribosomal machinery. Studies on RIP/cell interactions were able to detail the endocytosis and intracellular routing of ricin, thus increasing our knowledge of how cells handle exogenous proteins. The identification of new RIPs and the finding that most RIPs are single-chain polypeptides, together with their genetic sequencing, has aided in the development of new phylogenetic theories. Overall, the biological properties of these proteins, including their abortifacient, anticancer, antiviral and neurotoxic activities, suggest that RIPs could be utilized in agriculture and in many biomedical fields, including clinical drug development.


Assuntos
Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo , Animais , Endocitose , Humanos , Imunotoxinas/efeitos adversos , Imunotoxinas/química , Imunotoxinas/metabolismo , Filogenia , Proteínas de Plantas/efeitos adversos , Proteínas de Plantas/química , Conformação Proteica , Proteínas Inativadoras de Ribossomos/efeitos adversos , Proteínas Inativadoras de Ribossomos/química
7.
Molecules ; 21(11)2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27869738

RESUMO

Ribosome-inactivating proteins (RIPs) are enzymes that deadenylate nucleic acids and are broadly distributed in the plant kingdom. Many plants that contain RIPs are listed in the pharmacopoeias of folk medicine all over the world, mostly because of their toxicity. This review analyses the position occupied in traditional medicine by plants from which RIPs have been isolated. The overview starts from the antique age of the Mediterranean area with ancient Egypt, followed by the Greek and Roman classic period. Then, the ancient oriental civilizations of China and India are evaluated. More recently, Unani medicine and European folk medicine are examined. Finally, the African and American folk medicines are taken into consideration. In conclusion, a list of RIP-expressing plants, which have been used in folk medicine, is provided with the geographical distribution and the prescriptions that are recommended by traditional healers. Some final considerations are provided on the present utilization of such herbal treatments, both in developing and developed countries, often in the absence of scientific validation. The most promising prospect for the medicinal use of RIP-expressing plants is the conjugation of purified RIPs to antibodies that recognise tumour antigens for cancer therapy.


Assuntos
Medicina Tradicional Chinesa , Proteínas de Plantas/uso terapêutico , Plantas Medicinais/química , Proteínas Inativadoras de Ribossomos/uso terapêutico , Animais , Humanos , Farmacopeias como Assunto , Fitoterapia , Proteínas de Plantas/metabolismo , Plantas Medicinais/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo
8.
Biochim Biophys Acta ; 1842(9): 1502-17, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24882753

RESUMO

The enzyme xanthine oxidoreductase (XOR) catalyses the last step of purine degradation in the highest uricotelic primates as a rate-limiting enzyme in nucleic acid catabolism. Although XOR has been studied for more than a century, this enzyme continues to arouse interest because its involvement in many pathological conditions is not completely known. XOR is highly evolutionarily conserved; moreover, its activity is very versatile and tuneable at multiple-levels and generates both oxidant and anti-oxidant products. This review covers the basic information on XOR biology that is essential to understand its enzymatic role in human pathophysiology and provides a comprehensive catalogue of the experimental and human pathologies associated with increased serum XOR levels. The production of radical species by XOR oxidase activity has been intensively studied and evaluated in recent decades in conjunction with the cytotoxic consequences and tissue injuries of various pathological conditions. More recently, a role has emerged for the activity of endothelium-bound enzymes in inducing the vascular response to oxidative stress, which includes the regulation of pro-inflammatory and pro-thrombotic activities of endothelial cells. The possible physiological functions of circulating XOR and the products of its enzyme activity are presented here together with their implications in cardiovascular and metabolic diseases.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Síndrome Metabólica/fisiopatologia , Xantina Desidrogenase/metabolismo , Animais , Humanos
9.
Antioxidants (Basel) ; 13(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397809

RESUMO

Taking into account the patient's gender is the first step towards more precise and egalitarian medicine. The gender-related divergences observed in purine catabolism and their pathological consequences are good examples of gender medicine differences. Uric acid is produced by the activity of xanthine oxidoreductase (XOR). The serum levels of both XOR activity and uric acid differ physiologically between the genders, being higher in men than in women. Their higher levels have been associated with gout and hypertension, as well as with vascular, cardiac, renal, and metabolic diseases. The present review analyzes the gender-related differences in these pathological conditions in relation to increases in the serum levels of XOR and/or uric acid and the opportunity for gender-driven pharmacological treatment.

10.
Int J Mol Sci ; 14(8): 15532-45, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23892598

RESUMO

Ribosome-inactivating proteins (RIPs), enzymes that are widely distributed in the plant kingdom, inhibit protein synthesis by depurinating rRNA and many other polynucleotidic substrates. Although RIPs show antiviral, antifungal, and insecticidal activities, their biological and physiological roles are not completely understood. Additionally, it has been described that RIP expression is augmented under stressful conditions. In this study, we evaluated protein synthesis inhibition activity in partially purified basic proteins (hereafter referred to as RIP activity) from tissue extracts of Fragaria × ananassa (strawberry) cultivars with low (Dora) and high (Record) tolerance to root pathogens and fructification stress. Association between the presence of RIP activity and the crop management (organic or integrated soil), growth stage (quiescence, flowering, and fructification), and exogenous stress (drought) were investigated. RIP activity was found in every tissue tested (roots, rhizomes, leaves, buds, flowers, and fruits) and under each tested condition. However, significant differences in RIP distribution were observed depending on the soil and growth stage, and an increase in RIP activity was found in the leaves of drought-stressed plants. These results suggest that RIP expression and activity could represent a response mechanism against biotic and abiotic stresses and could be a useful tool in selecting stress-resistant strawberry genotypes.


Assuntos
Fragaria/enzimologia , Fragaria/metabolismo , Extratos Vegetais/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo , Animais , Estágios do Ciclo de Vida , Biossíntese de Proteínas , RNA Ribossômico/antagonistas & inibidores , RNA Ribossômico/metabolismo , Estresse Fisiológico
11.
Biomedicines ; 11(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37189832

RESUMO

Saporin is a type 1 ribosome-inactivating protein widely used as toxic payload in the construction of targeted toxins, chimeric molecules formed by a toxic portion linked to a carrier moiety. Among the most used carriers, there are large molecules (mainly antibodies) and small molecules (such as neurotransmitters, growth factors and peptides). Some saporin-containing targeted toxins have been used for the experimental treatment of several diseases, giving very promising results. In this context, one of the reasons for the successful use of saporin lies in its resistance to proteolytic enzymes and to conjugation procedures. In this paper, we evaluated the influence of derivatization on saporin using three heterobifunctional reagents, namely 2-iminothiolane (2-IT), N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and 4-succinimidyloxycarbonyl-α-methyl-α-[2-pyridyldithio]toluene (SMPT). In order to obtain the highest number of inserted -SH groups with the lowest reduction of saporin biological activities, we assessed the residual ability of saporin to inhibit protein synthesis, to depurinate DNA and to induce cytotoxicity after derivatization. Our results demonstrate that saporin maintains an excellent resistance to derivatization processes, especially with SPDP, and permit us to define reaction conditions, in which saporin biological properties may not be altered. Therefore, these findings provide useful information for the construction of saporin-based targeted toxins, especially with small carriers.

12.
Toxins (Basel) ; 16(1)2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276525

RESUMO

Ribosome-inactivating proteins (RIPs) are plant toxins that were identified for their ability to irreversibly damage ribosomes, thereby causing arrest of protein synthesis and induction of cell death. The RIPs purified from Adenia plants are the most potent ones. Here, we describe a novel toxic lectin from Adenia heterophylla caudex, which has been named heterophyllin. Heterophyllin shows the enzymatic and lectin properties of type 2 RIPs. Interestingly, in immunoreactivity experiments, heterophyllin poorly cross-reacts with sera against all other tested RIPs. The cytotoxic effects and death pathways triggered by heterophyllin were investigated in three human-derived cell lines: NB100, T24, and MCF7, and compared to ricin, the most known and studied type 2 RIP. Heterophyllin was able to completely abolish cell viability at nM concentration. A strong induction of apoptosis, but not necrosis, and the involvement of oxidative stress and necroptosis were observed in all the tested cell lines. Therefore, the enzymatic, immunological, and biological activities of heterophyllin make it an interesting molecule, worthy of further in-depth analysis to verify its possible pharmacological application.


Assuntos
Proteínas de Plantas , Ricina , Humanos , Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Ricina/toxicidade , Ricina/metabolismo , Proteínas Inativadoras de Ribossomos/toxicidade , Proteínas Inativadoras de Ribossomos/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas
13.
Water Sci Technol ; 65(1): 15-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22173403

RESUMO

Roadside gully pots are the connecting points between surface runoff and the underground drainage network; therefore they can be considered as the most superficial component of urban drainage systems. Gully pots are supposed to trap particulate matter washed off the catchment surface, but also to collect and convey stormwater into the network. The continuous accumulation of particulate matter results in a progressive loss of the gully pot hydraulic conveyance, thereby increasing the probability of urban flooding during rainstorm events. This study has therefore the objective to determine which variables influence the gully pot capability of retaining solids (efficiency), both experimentally and analytically. Several laboratory tests have been performed on a simple plastic gully pot, with different inflow rates and using both mono and hetero-disperse particle samples. Particular attention has been given to the influence exerted by the way particle settling velocity is expressed: efficiency has been analytically determined by means of multiple settling velocity formulas proposed by various authors and eventually compared to experimental data. Results deriving from the adoption of each single settling velocity formula have been extensively analysed, showing fairly different outcomes.


Assuntos
Drenagem Sanitária , Chuva , Modelos Teóricos , Tamanho da Partícula , Movimentos da Água
14.
Toxins (Basel) ; 14(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35051040

RESUMO

The concept of "magic bullets", i [...].


Assuntos
Imunotoxinas/uso terapêutico , Toxinas Biológicas/uso terapêutico , Humanos
15.
Front Pharmacol ; 13: 972046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052121

RESUMO

Immune checkpoint mechanisms are important molecular cell systems that maintain tolerance toward autoantigens in order to prevent immunity-mediated accidental damage. It is well known that cancer cells may exploit these molecular and cellular mechanisms to escape recognition and elimination by immune cells. Programmed cell death protein-1 (PD-1) and its natural ligand programmed cell death ligand-1 (PD-L1) form the PD-L1/PD-1 axis, a well-known immune checkpoint mechanism, which is considered an interesting target in cancer immunotherapy. In fact, the expression of PD-L1 was found in various solid malignancies and the overactivation of PD-L1/PD-1 axis results in a poor patient survival rate. Breaking PD-L1/PD-1 axis, by blocking either the cancer side or the immune side of the axis, is currently used as anti-cancer strategy to re-establish a tumor-specific immune response. For this purpose, several blocking antibodies are now available. To date, three anti-PD-L1 antibodies have been approved by the FDA, namely atezolizumab, durvalumab and avelumab. The main advantages of anti-PD-L1 antibodies arise from the overexpression of PD-L1 antigen by a high number of tumor cells, also deriving from different tissues; this makes anti-PD-L1 antibodies potential pan-specific anti-cancer molecules. Despite the good results reported in clinical trials with anti-PD-L1 antibodies, there is a significant number of patients that do not respond to the therapy. In fact, it should be considered that, in some neoplastic patients, reduced or absent infiltration of cytotoxic T cells and natural killer cells in the tumor microenvironment or presence of other immunosuppressive molecules make immunotherapy with anti-PD-L1 blocking antibodies less effective. A strategy to improve the efficacy of antibodies is to use them as carriers for toxic payloads (toxins, drugs, enzymes, radionuclides, etc.) to form immunoconjugates. Several immunoconjugates have been already approved by FDA for treatment of malignancies. In this review, we focused on PD-L1 targeting antibodies utilized as carrier to construct immunoconjugates for the potential elimination of neoplastic cells, expressing PD-L1. A complete examination of the literature regarding anti-PD-L1 immunoconjugates is here reported, describing the results obtained in vitro and in vivo. The real potential of anti-PD-L1 antibodies as carriers for toxic payload delivery is considered and extensively discussed.

16.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136551

RESUMO

Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that catalyze the removal of a specific adenine located in the sarcin-ricin loop of the large ribosomal RNA, which leads to the irreversible inhibition of protein synthesis and, consequently, cell death. The case of elderberry (Sambucus nigra L.) is unique, since more than 20 RIPs and related lectins have been isolated and characterized from the flowers, seeds, fruits, and bark of this plant. However, these kinds of proteins have never been isolated from elderberry leaves. In this work, we have purified RIPs and lectins from the leaves of this shrub, studying their main physicochemical characteristics, sequences, and biological properties. In elderberry leaves, we found one type 2 RIP and two related lectins that are specific for galactose, four type 2 RIPs that fail to agglutinate erythrocytes, and one type 1 RIP. Several of these proteins are homologous to others found elsewhere in the plant. The diversity of RIPs and lectins in the different elderberry tissues, and the different biological activities of these proteins, which have a high degree of homology with each other, constitute an excellent source of proteins that are of great interest in diagnostics, experimental therapy, and agriculture.


Assuntos
Ricina , Sambucus nigra , Sambucus , Adenina , Sequência de Aminoácidos , Galactose , N-Glicosil Hidrolases/genética , Folhas de Planta/metabolismo , Lectinas de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas/metabolismo , RNA Ribossômico , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Ribossomos/metabolismo , Ricina/metabolismo , Sambucus nigra/genética , Sambucus nigra/metabolismo
17.
Biochim Biophys Acta ; 1800(12): 1276-82, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20933061

RESUMO

BACKGROUND: The present research studied the interaction of two ribosome-inactivating proteins (RIPs) from Adenia genus with HeLa cells. Namely, lanceolin and stenodactylin were examined in comparison to volkensin, another toxic two-chain RIP from Adenia genus. METHODS: The binding, endocytosis, intracellular routing, degradation and exocytosis were investigated by measuring the distribution of radiolabelled RIP and by determining its cytotoxicity. RESULTS: Stenodactylin was the most toxic, resulting in the greater inhibition of protein synthesis and cell death. Lanceolin and stenodactylin bound to cells with comparable affinity and have a similar number of binding sites (10(5)/cell). The uptake of lanceolin and stenodactylin was 13 and 36 times greater, respectively, than that reported for volkensin. The two toxins bound to cell membrane receptors via their lectin B chain, were endocytosed through a clathrin-independent pathway, were internalised in a manner independent from endosomal acidification, and required routing through the Golgi apparatus, as reported for modeccin and volkensin. Stenodactylin showed greater uptake, exocytosis and re-uptake of non-degraded RIP than lanceolin and volkensin, whereas volkensin had the highest residual activity after being released from the cell. CONCLUSIONS: The high cytotoxicity of RIPs from the Adenia genus may depend on the following: high affinity binding to the cell and efficient endocytosis, intracellular routing that appears similar to that of other ricin-like toxic RIPs, partial resistance to proteolysis, and, regarding stenodactylin, high accumulation in cell. GENERAL SIGNIFICANCE: The data provide a model that could lead to new strategies for anti-cancer therapy and neuroscience studies.


Assuntos
Lectinas/metabolismo , N-Glicosil Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Análise de Variância , Ligação Competitiva , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exocitose , Células HeLa , Humanos , Concentração Inibidora 50 , Espaço Intracelular/metabolismo , Radioisótopos do Iodo/metabolismo , Cinética , Lectinas de Plantas/metabolismo , Lectinas de Plantas/toxicidade , Proteínas de Plantas/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos Tipo 2/toxicidade
18.
Redox Biol ; 48: 102195, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34844041

RESUMO

Cardiovascular diseases (CVD) are the leading cause of global mortality and their pathogenesis lies mainly in the atherosclerotic process. There are close connections linking oxidative stress and inflammation to endothelial dysfunction, atherosclerosis and, consequently, to CVD. This review focuses on the role of xanthine oxidoreductase (XOR) and its products on the development of chronic inflammation and oxidative stress, responsible for atheromatous plaque formation. Evidence is reported that an excessive level of XOR products favors inflammatory response and plaque development, thereby promoting major cardiovascular risk factors. Also, the relationship between hyperuricemia and hypertension as well as between XOR activity and CVD is confirmed. In spite of the increasing number of clinical studies investigating the output of cardiovascular patients treated with urate-lowering therapies (including uricosuric drugs, XOR inhibitors and recombinant uricase) the results are still uncertain. The inhibition of XOR activity appears more promising than just the control of uricemia level in preventing cardiovascular events, possibly because it also reduces the intracellular accumulation of urate, as well as the production of reactive oxygen species. However, XOR inhibition also reduces the availability of the multifaced mediator nitric oxide and, at present, can be recommended only in hyperuricemic patients.

19.
Redox Biol ; 41: 101882, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33578127

RESUMO

Human xanthine oxidoreductase (XOR) is a multiple-level regulated enzyme, resulting from a complicated evolutionary process that assigned it many physiological roles. The main XOR activities are: (i) xanthine dehydrogenase (XDH) activity that performs the last two steps of purine catabolism, from hypoxanthine to uric acid; (ii) xanthine oxidase (XO) activity that, besides purine catabolism, produces reactive oxygen species (ROS); (iii) nitrite reductase activity that generates nitric oxide, contributing to vasodilation and regulation of blood pressure; (iv) NADH oxidase activity that produces ROS. All these XOR activities contribute also to metabolize various endogenous and exogenous compounds, including some drugs. About XOR products, it should be considered that (i) uric acid is not only a proinflammatory agent, but also a fundamental antioxidant molecule in serum and (ii) XOR-derived ROS are essential to the inflammatory defensive response. Although XOR has been the object of a large number of studies, most of them were focused on the pathological consequences of its activity and there is not a clear and schematic picture of XOR physiological roles. In this review, we try to fill this gap, reporting and graphically schematizing the main roles of XOR and its products.


Assuntos
Óxido Nítrico , Xantina Desidrogenase , Humanos , Oxirredução , Espécies Reativas de Oxigênio , Ácido Úrico , Xantina Desidrogenase/metabolismo , Xantina Oxidase/metabolismo
20.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499082

RESUMO

Ribosome-inactivating proteins (RIPs) are plant toxins that irreversibly damage ribosomes and other substrates, thus causing cell death. RIPs are classified in type 1 RIPs, single-chain enzymatic proteins, and type 2 RIPs, consisting of active A chains, similar to type 1 RIPs, linked to lectin B chains, which enable the rapid internalization of the toxin into the cell. For this reason, many type 2 RIPs are very cytotoxic, ricin, volkensin and stenodactylin being the most toxic ones. From the caudex of Adenia kirkii (Mast.) Engl., a new type 2 RIP, named kirkiin, was purified by affinity chromatography on acid-treated Sepharose CL-6B and gel filtration. The lectin, with molecular weight of about 58 kDa, agglutinated erythrocytes and inhibited protein synthesis in a cell-free system at very low concentrations. Moreover, kirkiin was able to depurinate mammalian and yeast ribosomes, but it showed little or no activity on other nucleotide substrates. In neuroblastoma cells, kirkiin inhibited protein synthesis and induced apoptosis at doses in the pM range. The biological characteristics of kirkiin make this protein a potential candidate for several experimental pharmacological applications both alone for local treatments and as component of immunoconjugates for systemic targeting in neurodegenerative studies and cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neuroblastoma/tratamento farmacológico , Passifloraceae/enzimologia , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Agregação Eritrocítica/efeitos dos fármacos , Humanos , Peso Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/isolamento & purificação , Inibidores da Síntese de Proteínas/toxicidade , Proteínas Inativadoras de Ribossomos Tipo 2/isolamento & purificação , Proteínas Inativadoras de Ribossomos Tipo 2/toxicidade , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA