Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2208389120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126701

RESUMO

Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to reproductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young.


Assuntos
Mudança Climática , Características de História de Vida , Animais , Feminino , Estações do Ano , Galinhas , Reprodução
2.
Glob Chang Biol ; 30(7): e17400, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007244

RESUMO

Species exploiting seasonal environments must alter timings of key life-history events in response to large-scale climatic changes in order to maintain trophic synchrony with required resources. Yet, substantial among-species variation in long-term phenological changes has been observed. Advancing from simply describing such variation towards predicting future phenological responses requires studies that rigorously quantify and explain variation in the direction and magnitude of changing timings across diverse species in relation to key ecological and life-history variables. Accordingly, we fitted multi-quantile regressions to 59 years of multi-species data on spring and autumn bird migration timings through northern Scotland. We demonstrate substantial variation in changes in timings among 72 species, and tested whether such variation can be explained by species ecology, life-history and changes in local abundance. Consistent with predictions, species that advanced their migration timing in one or both seasons had more seasonally restricted diet types, fewer suitable breeding habitat types, shorter generation lengths and capability to produce multiple offspring broods per year. In contrast, species with less seasonally restricted diet types and that produce single annual offspring broods, showed no change. Meanwhile, contrary to prediction, long-distance and short-distance migrants advanced migration timings similarly. Changes in migration timing also varied with changes in local migratory abundance, such that species with increasing seasonal abundance apparently altered their migration timing, whilst species with decreasing abundance did not. Such patterns broadly concur with expectation given adaptive changes in migration timing. However, we demonstrate that similar patterns can be generated by numerical sampling given changing local abundances. Any apparent phenology-abundance relationships should, therefore, be carefully validated and interpreted. Overall, our results show that migrant bird species with differing ecologies and life-histories showed systematically differing phenological changes over six decades contextualised by large-scale environmental changes, potentially facilitating future predictions and altering temporal dynamics of seasonal species co-occurrences.


Assuntos
Migração Animal , Aves , Estações do Ano , Animais , Migração Animal/fisiologia , Aves/fisiologia , Escócia , Ecossistema , Características de História de Vida , Mudança Climática , Dieta
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260406

RESUMO

Colonially breeding birds and mammals form some of the largest gatherings of apex predators in the natural world and have provided model systems for studying mechanisms of population regulation in animals. According to one influential hypothesis, intense competition for food among large numbers of spatially constrained foragers should result in a zone of prey depletion surrounding such colonies, ultimately limiting their size. However, while indirect and theoretical support for this phenomenon, known as "Ashmole's halo," has steadily accumulated, direct evidence remains exceptionally scarce. Using a combination of vessel-based surveys and Global Positioning System tracking, we show that pelagic seabirds breeding at the tropical island that first inspired Ashmole's hypothesis do indeed deplete their primary prey species (flying fish; Exocoetidae spp.) over a considerable area, with reduced prey density detectable >150 km from the colony. The observed prey gradient was mirrored by an opposing trend in seabird foraging effort, could not be explained by confounding environmental variability, and can be approximated using a mechanistic consumption-dispersion model, incorporating realistic rates of seabird predation and random prey dispersal. Our results provide a rare view of the resource footprint of a pelagic seabird colony and reveal how aggregations of these central-place foraging, marine top predators profoundly influence the oceans that surround them.


Assuntos
Ecossistema , Comportamento Predatório/fisiologia , Animais , Comportamento Animal , Evolução Biológica , Aves/fisiologia , Comportamento Competitivo , Comportamento Alimentar/fisiologia , Peixes/fisiologia , Ilhas
4.
Proc Natl Acad Sci U S A ; 116(43): 21629-21633, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591238

RESUMO

While displacement experiments have been powerful for determining the sensory basis of homing navigation in birds, they have left unresolved important cognitive aspects of navigation such as what birds know about their location relative to home and the anticipated route. Here, we analyze the free-ranging Global Positioning System (GPS) tracks of a large sample (n = 707) of Manx shearwater, Puffinus puffinus, foraging trips to investigate, from a cognitive perspective, what a wild, pelagic seabird knows as it begins to home naturally. By exploiting a kind of natural experimental contrast (journeys with or without intervening obstacles) we first show that, at the start of homing, sometimes hundreds of kilometers from the colony, shearwaters are well oriented in the homeward direction, but often fail to encode intervening barriers over which they will not fly (islands or peninsulas), constrained to flying farther as a result. Second, shearwaters time their homing journeys, leaving earlier in the day when they have farther to go, and this ability to judge distance home also apparently ignores intervening obstacles. Thus, at the start of homing, shearwaters appear to be making navigational decisions using both geographic direction and distance to the goal. Since we find no decrease in orientation accuracy with trip length, duration, or tortuosity, path integration mechanisms cannot account for these findings. Instead, our results imply that a navigational mechanism used to direct natural large-scale movements in wild pelagic seabirds has map-like properties and is probably based on large-scale gradients.


Assuntos
Comportamento de Retorno ao Território Vital/fisiologia , Orientação Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Aves , Sistemas de Informação Geográfica
5.
J Anim Ecol ; 90(12): 2875-2887, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34492121

RESUMO

Individual specialisations in behaviour are predicted to arise where divergence benefits fitness. Such specialisations are more likely in heterogeneous environments where there is both greater ecological opportunity and competition-driven frequency dependent selection. Such an effect could explain observed differences in rates of individual specialisation in habitat selection, as it offers individuals an opportunity to select for habitat types that maximise resource gain while minimising competition; however, this mechanism has not been tested before. Here, we use habitat selection functions to quantify individual specialisations while foraging by black-legged kittiwakes Rissa tridactyla, a marine top predator, at 15 colonies around the United Kingdom and Ireland, along a gradient of environmental heterogeneity. We find support for the hypothesis that individual specialisations in habitat selection while foraging are more prevalent in heterogeneous environments. This trend was significant across multiple dynamic habitat variables that change over short time-scales and did not arise through site fidelity, which highlights the importance of environmental processes in facilitating behavioural adaptation by predators. Individual differences may drive evolutionary processes, and therefore these results suggest that there is broad scope for the degree of environmental heterogeneity to determine current and future population, species and community dynamics.


Assuntos
Charadriiformes , Ecossistema , Animais , Reino Unido
6.
Proc Biol Sci ; 286(1904): 20190795, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161906

RESUMO

Environmental heterogeneity shapes the uneven distribution of resources available to foragers, and is ubiquitous in nature. Optimal foraging theory predicts that an animal's ability to exploit resource patches is key to foraging success. However, the potential fitness costs and benefits of foraging in a heterogeneous environment are difficult to measure empirically. Heterogeneity may provide higher-quality foraging opportunities, or alternatively could increase the cost of resource acquisition because of reduced patch density or increased competition. Here, we study the influence of physical environmental heterogeneity on behaviour and reproductive success of black-legged kittiwakes, Rissa tridactyla. From GPS tracking data at 15 colonies throughout their British and Irish range, we found that environments that were physically more heterogeneous were associated with longer trip duration, more time spent foraging while away from the colony, increased overlap of foraging areas between individuals and lower breeding success. These results suggest that there is greater competition between individuals for finite resources in more heterogeneous environments, which comes at a cost to reproduction. Resource hotspots are often considered beneficial, as individuals can learn to exploit them if sufficiently predictable. However, we demonstrate here that such fitness gains can be countered by greater competition in more heterogeneous environments.


Assuntos
Comportamento Animal , Charadriiformes/fisiologia , Ecossistema , Animais , Cruzamento , Comportamento Alimentar , Irlanda , Reprodução , Fatores de Tempo , Reino Unido
7.
Mol Phylogenet Evol ; 139: 106552, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31278983

RESUMO

Humans are inherently biased towards naming species based on morphological differences, which can lead to reproductively isolated species being mistakenly classified as one if they are morphologically similar. Recognising cryptic diversity is needed to understand drivers of speciation fully, and for accurate estimates of global biodiversity and assessments for conservation. We investigated cryptic species across the range of band-rumped storm-petrels (Hydrobates spp.): highly pelagic, nocturnal seabirds that breed on tropical and sub-tropical islands in the Atlantic and Pacific Oceans. In many breeding colonies, band-rumped storm-petrels have sympatric but temporally isolated (allochronic) populations; we sampled all breeding locations and allochronic populations. Using mitochondrial control region sequences from 754 birds, cytochrome b sequences from 69 birds, and reduced representation sequencing of the nuclear genomes of 133 birds, we uncovered high levels of genetic structuring. Population genomic analyses revealed up to seven unique clusters, and phylogenomic reconstruction showed that these represent seven monophyletic groups. We uncovered up to six independent breeding season switches across the phylogeny, spanning the continuum from genetically undifferentiated temporal populations to full allochronic species. Thus, band-rumped storm-petrels encompass multiple cryptic species, with non-geographic barriers potentially comprising strong barriers to gene flow.


Assuntos
Charadriiformes/classificação , Filogenia , Animais , Oceano Atlântico , Teorema de Bayes , Biodiversidade , Cruzamento , Charadriiformes/genética , DNA Mitocondrial/genética , Fluxo Gênico , Genética Populacional , Geografia , Funções Verossimilhança , Mitocôndrias/genética , Oceano Pacífico , Análise de Componente Principal , Especificidade da Espécie
8.
J Anim Ecol ; 88(1): 138-153, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353538

RESUMO

Habitat management to restore or create breeding sites may allow metapopulations to increase in size and reduce the risk of demographic stochasticity or disasters causing metapopulation extinction. However, if newly restored or created sites are of low quality, they may act as sinks that draw individuals away from better quality sites to the detriment of metapopulation size. Following intensive conservation effort, the metapopulation of roseate tern (Sterna dougallii) in NW Europe is recovering from a large crash in numbers, but most former colonies remain unoccupied and hence are potential targets for restoration. To inform conservation efforts, we studied the dynamics of this metapopulation with a multistate integrated population model to assess each of the three main colonies for important demographic contributors to population growth rate, source/sink status and possible density dependence. All three study colonies are managed for roseate terns (and other tern species) in similar ways, but the demographic processes vary considerably between colonies. The largest colony is a source involved in almost all dispersal, and its growth is determined by survival rates and productivity. Productivity and juvenile apparent survival at the largest colony appear to be density-dependent. Although the mechanisms are unclear, this may provide an increasing impetus for emigration of recruits to other colonies in future. The smallest of the three colonies is a sink, relying on immigration for its growth. Simulation models suggest the metapopulation would be c. 10% larger in the absence of dispersal to the sink colony. This work indicates that, due to variable site quality, aims to enhance both distribution and size of metapopulations may be mutually exclusive. In this case, before future attempts to encourage recolonisation of former sites, assessments of site suitability should be undertaken, focusing on food availability and isolation from predators to maximise the likelihood of attaining levels of productivity and survival that avoid creation of a sink population to the detriment of the overall metapopulation size.


Assuntos
Charadriiformes , Animais , Demografia , Ecossistema , Europa (Continente) , Dinâmica Populacional
9.
J Anim Ecol ; 87(6): 1573-1586, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30155905

RESUMO

Understanding drivers of population change is critical for effective species conservation. In the northeast Atlantic Ocean, recent changes amongst seabird communities are linked to human and climate change impacts on food webs. Many species have declined severely, with food shortages, and increased predation reducing productivity. Arctic skua Stercorarius parasiticus, a kleptoparasite of other seabirds, is one such species. The aim of the study was to determine relative effects of bottom-up and top-down pressures on Arctic skuas across multiple colonies in a rapidly declining national population. Long-term monitoring data were used to quantify changes in population size and productivity of Arctic skuas, their hosts (black-legged kittiwake Rissa tridactyla, common guillemot Uria aalge, Atlantic puffin Fratercula arctica, Arctic tern Sterna paradisaea) and an apex predator (great skua Stercorarius skua) over 24 years (1992-2015) in Scotland. We used digital mapping and statistical models to determine relative effects of bottom-up (host productivity) and top-down (great skua density) pressures on Arctic skuas across 33 colonies, and assess variation between three colony types classified by host abundance. Arctic skuas declined by 81% and their hosts by 42%-92%, whereas at most colonies great skuas increased. Annual productivity declined in Arctic skuas and their hosts, and reduced Arctic skua breeding success was a driver of the species' population decline. Arctic skua productivity was positively associated with annual breeding success of hosts and negatively with great skua density. Intercolony variation suggested Arctic skua trends and productivity were most sensitive to top-down pressures at smaller colonies of host species where great skuas had increased most, whereas bottom-up pressures dominated at large colonies of host species. Scotland's Arctic skua population is declining rapidly, with bottom-up and top-down pressures simultaneously reducing breeding success to unsustainably low levels. Marine food web alterations, strongly influenced by fisheries management and climate change, are driving the decline, and this study demonstrates severe vulnerability of seabirds to rapid change in human-modified ecosystems. Potential but untested conservation solutions for Arctic skuas include marine protected areas, supplementary feeding within colonies and management of great skuas.


Assuntos
Charadriiformes , Animais , Regiões Árticas , Oceano Atlântico , Ecossistema , Escócia
10.
Glob Chang Biol ; 23(4): 1400-1414, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27670638

RESUMO

Phenological changes in key seasonally expressed life-history traits occurring across periods of climatic and environmental change can cause temporal mismatches between interacting species, and thereby impact population and community dynamics. However, studies quantifying long-term phenological changes have commonly only measured variation occurring in spring, measured as the first or mean dates on which focal traits or events were observed. Few studies have considered seasonally paired events spanning spring and autumn or tested the key assumption that single convenient metrics accurately capture entire event distributions. We used 60 years (1955-2014) of daily bird migration census data from Fair Isle, Scotland, to comprehensively quantify the degree to which the full distributions of spring and autumn migration timing of 13 species of long-distance migratory bird changed across a period of substantial climatic and environmental change. In most species, mean spring and autumn migration dates changed little. However, the early migration phase (≤10th percentile date) commonly got earlier, while the late migration phase (≥90th percentile date) commonly got later. Consequently, species' total migration durations typically lengthened across years. Spring and autumn migration phenologies were not consistently correlated within or between years within species and hence were not tightly coupled. Furthermore, different metrics quantifying different aspects of migration phenology within seasons were not strongly cross-correlated, meaning that no single metric adequately described the full pattern of phenological change. These analyses therefore reveal complex patterns of simultaneous advancement, temporal stability and delay in spring and autumn migration phenologies, altering species' life-history structures. Additionally, they demonstrate that this complexity is only revealed if multiple metrics encompassing entire seasonal event distributions, rather than single metrics, are used to quantify phenological change. Existing evidence of long-term phenological changes detected using only one or two metrics should consequently be interpreted cautiously because divergent changes occurring simultaneously could potentially have remained undetected.


Assuntos
Migração Animal , Aves , Animais , Meio Ambiente , Escócia , Estações do Ano
11.
Ecol Appl ; 27(7): 2074-2091, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28653410

RESUMO

Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social insects), because it is often impractical to determine the provenance of individuals observed beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds, turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilometers from their colonies. It is hypothesized that the distribution of CCPFs depends largely on habitat availability and intraspecific competition. Modeling these effects may therefore allow distributions to be estimated from samples of individual spatial usage. Such data can be obtained for an increasing number of species using tracking technology. However, techniques for estimating population-level distributions using the telemetry data are poorly developed. This is of concern because many marine CCPFs, such as seabirds, are threatened by anthropogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, foraging from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12, and 14 colonies, respectively. Using Poisson point process habitat use models, we show that distribution at sea is dependent on (1) density-dependent competition among sympatric conspecifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessibility and coastal geometry, such that birds travel further from colonies with limited access to the sea; and (3) regional habitat availability. Using these models, we predict space use by birds from unobserved colonies and thereby map the distribution at sea of each species at both the colony and regional level. Space use by all four species' British breeding populations is concentrated in the coastal waters of Scotland, highlighting the need for robust conservation measures in this area. The techniques we present are applicable to any CCPF.


Assuntos
Distribuição Animal , Aves/fisiologia , Comportamento Alimentar , Comportamento de Nidação , Animais , Charadriiformes/fisiologia , Irlanda , Modelos Biológicos , Densidade Demográfica , Reino Unido
12.
Naturwissenschaften ; 104(11-12): 103, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29143134

RESUMO

Bottleneck episodes may occur in small and isolated animal populations, which may result in decreased genetic diversity and increased inbreeding, but also in mating strategy adjustment. This was evaluated in the vulnerable and socially monogamous Monteiro's Storm-petrel Hydrobates monteiroi, a seabird endemic to the Azores archipelago which has suffered a dramatic population decline since the XVth century. To do this, we conducted a genetic study (18 microsatellite markers) in the population from Praia islet, which has been monitored over 16 years. We found no evidence that a genetic bottleneck was associated with this demographic decline. Monteiro's Storm-petrels paired randomly with respect to genetic relatedness and body measurements. Pair fecundity was unrelated to genetic relatedness between partners. We detected only two cases of extra-pair parentage associated with an extra-pair copulation (out of 71 offspring). Unsuccessful pairs were most likely to divorce the next year, but genetic relatedness between pair mates and pair breeding experience did not influence divorce. Divorce enabled individuals to improve their reproductive performances after re-mating only when the new partner was experienced. Re-pairing with an experienced partner occurred more frequently when divorcees changed nest than when they retained their nest. This study shows that even in strongly reduced populations, genetic diversity can be maintained, inbreeding does not necessarily occur, and random pairing is not risky in terms of pair lifetime reproductive success. Given, however, that we found no clear phenotypic mate choice criteria, the part played by non-morphological traits should be assessed more accurately in order to better understand seabird mating strategies.


Assuntos
Aves/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Açores , Aves/genética , Feminino , Variação Genética , Masculino , Repetições de Microssatélites/genética , Densidade Demográfica
13.
Proc Biol Sci ; 282(1818): 20151529, 2015 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-26511053

RESUMO

Positive covariations between survival and reproductive performance (S-R covariation) are generally interpreted in the context of fixed or dynamic demographic heterogeneity (i.e. persistent differences between individuals, or dynamic variation in resource acquisition), but the processes underlying covariations are still unknown. We used multi-event modelling to investigate how environmental and individual features influence S-R covariation patterns in a long-lived seabird, the Monteiro's storm petrel (Oceanodroma monteiroi). Our analysis reveals that a strong positive association between individual breeding success and subsequent survival occurs only when conditions are favourable to reproduction (in favourable years, in high-quality nests and in nest-faithful breeders). This finding reflects differences in the main causes of breeding failure and mortality under favourable and unfavourable conditions, which in turn lead to distinct patterns of S-R covariation. We suggest, in particular, that resource-related sources of demographic heterogeneity do not generate a strong S-R covariation, in contrast with hidden and unpredictable sources of variation.


Assuntos
Aves/fisiologia , Meio Ambiente , Longevidade , Comportamento de Nidação , Reprodução/fisiologia , Animais , Açores , Feminino , Masculino , Modelos Biológicos
14.
Mol Ecol ; 24(12): 3122-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25903359

RESUMO

Analytical methods that apply coalescent theory to multilocus data have improved inferences of demographic parameters that are critical to understanding population divergence and speciation. In particular, at the early stages of speciation, it is important to implement models that accommodate conflicting gene trees, and benefit from the presence of shared polymorphisms. Here, we employ eleven nuclear loci and the mitochondrial control region to investigate the phylogeography and historical demography of the pelagic seabird White-faced Storm-petrel (Pelagodroma marina) by sampling subspecies across its antitropical distribution. Groups are all highly differentiated: global mitochondrial ΦST = 0.89 (P < 0.01) and global nuclear ΦST varies between 0.22 and 0.83 (all P < 0.01). The complete lineage sorting of the mitochondrial locus between hemispheres is corroborated by approximately half of the nuclear genealogies, suggesting a long-term antitropical divergence in isolation. Coalescent-based estimates of demographic parameters suggest that hemispheric divergence of P. marina occurred approximately 840 000 ya (95% HPD 582 000-1 170 000), in the absence of gene flow, and divergence within the Southern Hemisphere occurred 190 000 ya (95% HPD 96 000-600 000), both probably associated with the profound palaeo-oceanographic changes of the Pleistocene. A fledgling sampled in St Helena (tropical South Atlantic) suggests recent colonization from the Northern Hemisphere. Despite the great potential for long-distance dispersal, P. marina antitropical groups have been evolving as independent, allopatric lineages, and divergence is probably maintained by philopatry coupled with asynchronous reproductive phenology and local adaptation.


Assuntos
Aves/genética , Evolução Molecular , Variação Genética , Genética Populacional , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA
15.
J Exp Biol ; 218(Pt 5): 668-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25617465

RESUMO

Conditions experienced during early life can have profound consequences for both short- and long-term fitness. Variation in the natal environment has been shown to influence survival and reproductive performance of entire cohorts in wild vertebrate populations. Telomere dynamics potentially provide a link between the early environment and long-term fitness outcomes, yet we know little about how the environment can influence telomere dynamics in early life. We found that environmental conditions during growth have an important influence on early-life telomere length (TL) and attrition in nestlings of a long-lived bird, the European storm petrel Hydrobates pelagicus. Nestlings reared under unfavourable environmental conditions experienced significantly greater telomere loss during postnatal development compared with nestlings reared under more favourable natal conditions, which displayed a negligible change in TL. There was, however, no significant difference in pre-fledging TL between cohorts. The results suggest that early-life telomere dynamics could contribute to the marked differences in life-history traits that can arise among cohorts reared under different environmental conditions. Early-life TL was also found to be a significant predictor of survival during the nestling phase, providing further evidence for a link between variation in TL and individual fitness. To what extent the relationship between early-life TL and mortality during the nestling phase is a consequence of genetic, parental and environmental factors is currently unknown, but it is an interesting area for future research. Accelerated telomere attrition under unfavourable conditions, as observed in this study, might play a role in mediating the effects of the early-life environment on later-life performance.


Assuntos
Aves/fisiologia , Meio Ambiente , Estresse Fisiológico/genética , Telômero/fisiologia , Animais , Aves/sangue , Aves/crescimento & desenvolvimento , Eritrócitos/ultraestrutura , Longevidade , Encurtamento do Telômero
16.
Proc Biol Sci ; 281(1793)2014 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-25209940

RESUMO

Although the reproductive success of most organisms depends on factors acting at several spatial scales, little is known about how organisms are able to synthesize multi-scale information to optimize reproduction. Using longitudinal data from a long-lived seabird, Monteiro's storm-petrel, we show that average breeding success is strongly related to oceanic conditions at the population level, and we postulate that (i) individuals use proximal information (their own reproduction outcome in year t) to assess the qualities of their mate and nest and to decide to retain them or not in year t + 1; (ii) the intensity of these responses depends on the quality of the oceanic environment in year t, which affects the predictability of reproduction outcome in year t + 1. Our results confirm that mate and nest fidelities are higher following successful reproduction and that the relationship between the success of a given pair and subsequent nest fidelity is stronger in years with unfavourable oceanic conditions, suggesting that individuals rely on distant information to modulate their use of proximal information and adjust their breeding strategy.


Assuntos
Aves/fisiologia , Meio Ambiente , Comportamento de Nidação , Reprodução , Animais , Feminino , Longevidade , Masculino , Oceanos e Mares , Estações do Ano
17.
Biol Conserv ; 174(100): 127-133, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24899731

RESUMO

While negative effects of human disturbance on animals living above the ground have been widely reported, few studies have considered effects on animals occupying cavities or burrows underground. It is generally assumed that, in the absence of direct visual contact, such species are less vulnerable to disturbance. Seabird colonies can support large populations of burrow- and cavity-nesting species and attract increasing numbers of tourists. We investigated the potential effects of recreational disturbance on the reproductive behaviour of the European storm petrel Hydrobates pelagicus, a nocturnally-active cavity-nesting seabird. Reproductive phenology and outcome of nests subject to high and low levels of visitor pressure were recorded in two consecutive years. Hatching success did not differ between disturbance levels, but overall nestling mortality was significantly higher in areas exposed to high visitor pressure. Although visitor numbers were consistent throughout the season, the magnitude and rate of a seasonal decline in productivity were significantly greater in nests subject to high disturbance. This study presents good evidence that, even when humans do not pose a direct mortality risk, animals may perceive them as a predation risk. This has implications for the conservation and management of a diverse range of burrow- and cavity-dwelling animals. Despite this reduction in individual fitness, overall colony productivity was reduced by ⩽1.6% compared with that expected in the absence of visitors. While the colony-level consequences at the site in question may be considered minor, conservation managers must evaluate the trade-off between potential costs and benefits of public access on a site- and species-specific basis.

18.
Mov Ecol ; 12(1): 46, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872225

RESUMO

BACKGROUND: Fidelity to a given foraging location or route may be beneficial when environmental conditions are predictable but costly if conditions deteriorate or become unpredictable. Understanding the magnitude of fidelity displayed by different species and the processes that drive or erode it is therefore vital for understanding how fidelity may shape the demographic consequences of anthropogenic change. In particular, understanding the information that individuals may use to adjust their fidelity will facilitate improved predictions of how fidelity may change as environments change and the extent to which it will buffer individuals against such changes. METHODS: We used movement data collected during the breeding season across eight years for common guillemots, Atlantic puffins, razorbills, and black-legged kittiwakes breeding on the Isle of May, Scotland to understand: (1) whether foraging site/route fidelity occurred within and between years, (2) whether the degree of fidelity between trips was predicted by personal foraging effort, and (3) whether different individuals made more similar trips when they overlapped in time at the colony prior to departure and/or when out at sea suggesting the use of the same local environmental cues or information on the decisions made by con- and heterospecifics. RESULTS: All species exhibited site and route fidelity both within- and between-years, and fidelity between trips in guillemots and razorbills was related to metrics of foraging effort, suggesting they adjust fidelity to their personal foraging experience. We also found evidence that individuals used local environmental cues of prey location or availability and/or information gained by observing conspecifics when choosing foraging routes, particularly in puffins, where trips of individuals that overlapped temporally at the colony or out at sea were more similar. CONCLUSIONS: The fidelity shown by these seabird species has the potential to put them at greater risk in the face of environmental change by driving individuals to continue using areas being degraded by anthropogenic pressures. However, our results suggest that individuals show some flexibility in their fidelity, which may promote resilience under environmental change. The benefits of this flexibility are likely to depend on numerous factors, including the rapidity and spatial scale of environmental change and the reliability of the information individuals use to choose foraging sites or routes, thus highlighting the need to better understand how organisms combine cues, prior experience, and other sources of information to make movement decisions.

19.
Nat Commun ; 14(1): 3665, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402727

RESUMO

Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.


Assuntos
Plásticos , Resíduos , Animais , Plásticos/toxicidade , Resíduos/análise , Monitoramento Ambiental , Oceanos e Mares , Aves , Oceano Índico
20.
Ecology ; 93(8): 1944-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928422

RESUMO

Environmental variability, costs of reproduction, and heterogeneity in individual quality are three important sources of the temporal and interindividual variations in vital rates of wild populations. Based on an 18-year monitoring of an endangered, recently described, long-lived seabird, Monteiro's Storm-Petrel (Oceanodroma monteiroi), we designed multistate survival models to separate the effects of the reproductive cost (breeders vs. nonbreeders) and individual quality (successful vs. unsuccessful breeders) in relation to temporally variable demographic and oceanographic properties. The analysis revealed a gradient of individual quality from nonbreeders, to unsuccessful breeders, to successful breeders. The survival rates of unsuccessful breeders (0.90 +/- 0.023, mean +/- SE) tended to decrease in years of high average breeding success and were more sensitive to oceanographic variation than those of both (high-quality) successful breeders (0.97 +/- 0.015) and (low-quality) nonbreeders (0.83 +/- 0.028). Overall, our results indicate that reproductive costs act on individuals of intermediate quality and are mediated by environmental harshness.


Assuntos
Aves/fisiologia , Ecossistema , Reprodução/fisiologia , Animais , Metabolismo Energético , Feminino , Longevidade , Masculino , Oceanos e Mares , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA