RESUMO
Although it is generally known that a combination of abiotic and biotic drivers shapes the distribution and abundance of parasites, our understanding of the interplay of these factors remains to be assessed for most marine host species. The present field survey investigated spatial patterns of richness, prevalence and abundance of parasites in Mytilus galloprovincialis along the coast of the northern Adriatic Sea. Herein, the relationships between biotic (host size, density and local parasite richness of mussel population) and abiotic (eutrophication and salinity) drivers and parasite richness of mussel individuals, prevalence and abundance were analysed. Local parasite richness was the most relevant factor driving parasite species richness in mussel individuals. Prevalence was mainly driven by eutrophication levels in three out of four parasite species analysed. Similarly, abundance was driven mainly by eutrophication in two parasite species. Mussel size, density and salinity had only minor contributions to the best fitting models. This study highlights that the influence of abiotic and biotic drivers on parasite infections in mussels can be differentially conveyed, depending on the infection measure applied, i.e. parasite richness, prevalence or abundance. Furthermore, it stresses the importance of eutrophication as a major factor influencing parasite prevalence and abundance in mussels in the Adriatic Sea.
Assuntos
Mytilus , Parasitos , Doenças Parasitárias , Animais , Humanos , Prevalência , SalinidadeRESUMO
Climate change is driving compositional shifts in ecological communities directly by affecting species and indirectly through changes in species interactions. For example, competitive hierarchies can be inversed when competitive dominants are more susceptible to climate change. The brown seaweed Fucus vesiculosus is a foundation species in the Baltic Sea, experiencing novel interactions with the invasive red seaweed Gracilaria vermiculophylla, which is known for its high tolerance to environmental stress. We investigated the direct and interactive effects of warming and co-occurrence of the two algal species on their performance, by applying four climate change-relevant temperature scenarios: 1) cooling ) 2 °C below ambient - representing past conditions), 2) ambient summer temperature (18 °C), 3) IPCC RCP2.6 warming scenario (1 °C above ambient), and 4) RCP8.5 warming (3 °C above ambient) for 30 days and two compositional levels (mono and co-cultured algae) in a fully-crossed design. The RCP8.5 warming scenario increased photosynthesis, respiration, and nutrients' uptake rates of mono- and co-cultured G. vermiculophylla while growth was reduced. An increase in photosynthesis and essential nutrients' uptake and, at the same time, a growth reduction might result from increasing stress and energy demand of G. vermiculophylla under warming. In contrast, the growth of mono-cultured F. vesiculosus significantly increased in the highest warming treatment (+3 °C). The cooling treatment (-2 °C) exerted a slight negative effect only on co-cultured F. vesiculosus photosynthesis, compared to the ambient treatment. Interestingly, at ambient and warming (RCP2.6 and RCP8.5 scenarios) treatments, both F. vesiculosus and G. vermiculophylla appear to benefit from the presence of each other. Our results suggest that short exposure of F. vesiculosus to moderate or severe global warming scenarios may not directly affect or even slightly enhance its performance, while G. vermiculophylla net performance (growth) could be directly hampered by warming.