RESUMO
We aimed to verify whether the immune system may represent a source of potential biomarkers for the stratification of immune-mediated necrotizing myopathies (IMNMs) subtypes. A group of 22 patients diagnosed with IMNM [7 with autoantibodies against signal recognition particle (SRP) and 15 against 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR)] and 12 controls were included. A significant preponderance of M1 macrophages was observed in both SRP+ and HMGCR+ muscle samples (p < 0.0001 in SRP+ and p = 0.0316 for HMGCR+ ), with higher values for SRP+ (p = 0.01). Despite the significant increase observed in the expression of TLR4 and all endosomal Toll-like receptors (TLRs) at protein level in IMNM muscle tissue, only TLR7 has been shown considerably upregulated compared to controls at transcript level (p = 0.0026), whereas TLR9 was even decreased (p = 0.0223). Within IMNM subgroups, TLR4 (p = 0.0116) mRNA was significantly increased in SRP+ compared to HMGCR+ patients. Within IMNM group, only IL-7 was differentially expressed between SRP+ and HMGCR+ patients, with higher values in SRP+ patients (p = 0.0468). Overall, innate immunity represents a key player in pathological mechanisms of IMNM. TLR4 and the inflammatory cytokine IL-7 represent potential immune biomarkers able to differentiate between SRP+ and HMGCR+ patients.
Assuntos
Doenças Autoimunes , Miosite , Humanos , Interleucina-7 , Músculo Esquelético/patologia , Receptor 4 Toll-Like/genética , Miosite/diagnóstico , Miosite/patologia , Autoanticorpos , Biomarcadores , Partícula de Reconhecimento de Sinal , Necrose/patologiaRESUMO
INTRODUCTION/AIMS: Fatigue (subjective perception) and fatigability (objective motor performance worsening) are relevant aspects of disability in individuals with spinal muscular atrophy (SMA). The effect of nusinersen on fatigability in SMA patients has been investigated with conflicting results. We aimed to evaluate this in adult with SMA3. METHODS: We conducted a multicenter retrospective cohort study, including adult ambulant patients with SMA3, data available on 6-minute walk test (6MWT) and Hammersmith Functional Motor Scale-Expanded (HFMSE) at baseline and at least at 6 months of treatment with nusinersen. We investigated fatigability, estimated as 10% or higher decrease in walked distance between the first and sixth minute of the 6MWT, at baseline and over the 14-month follow-up. RESULTS: Forty-eight patients (56% females) were included. The 6MWT improved after 6, 10, and 14 months of treatment (p < 0.05). Of the 27 patients who completed the entire follow-up, 37% improved (6MWT distance increase ≥30 m), 48.2% remained stable, and 14.8% worsened (6MWT distance decline ≥30 m). Fatigability was found at baseline in 26/38 (68%) patients and confirmed at subsequent time points (p < 0.05) without any significant change over the treatment period. There was no correlation between fatigability and SMN2 copy number, sex, age at disease onset, age at baseline, nor with 6MWT total distance and baseline HFMSE score. DISCUSSION: Fatigability was detected at baseline in approximately 2/3 of SMA3 walker patients, without any correlation with clinical features, included motor performance. No effect on fatigability was observed during the 14-month treatment period with nusinersen.
Assuntos
Fadiga , Atrofia Muscular Espinal , Oligonucleotídeos , Teste de Caminhada , Humanos , Masculino , Feminino , Oligonucleotídeos/uso terapêutico , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Fadiga/tratamento farmacológico , Fadiga/etiologia , Fadiga/fisiopatologia , Fadiga/diagnóstico , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/fisiopatologia , Adulto Jovem , Resultado do Tratamento , Estudos de Coortes , Adolescente , Avaliação de Resultados em Cuidados de Saúde , SeguimentosRESUMO
BACKGROUND AND PURPOSE: Inhibition of the neonatal Fc receptor (FcRn) for IgG is a promising new therapeutic strategy for antibody-mediated disorders. We report our real-life experience with efgartigimod (EFG) in 19 patients with generalized myasthenia gravis (gMG) along a clinical follow-up of 14 months. METHODS: EFG was administered according to the GENERATIVE protocol (consisting of a Fixed period of two treatment cycles [given 1 month apart] of four infusions at weekly intervals, followed by a Flexible period of re-cycling in case of worsening). Eight patients were positive for acetylcholine receptor antibody, four for muscle-specific tyrosine kinase antibody, and two for lipoprotein-related protein 4 antibody, and five were classified as triple negative. Efficacy of EFG was assessed by the Myasthenia Gravis Activities of Daily Living, Myasthenia Gravis Composite, and Quantitative Myasthenia Gravis scales. RESULTS: Fifty-three percent of patients needed three treatment cycles, 26% needed four, and 21% needed five along the 14-month clinical follow-up. Meaningful improvement was observed at the end of each cycle with the clinical scores adopted. EFG had a dramatic effect on disease course, as during the year before treatment eight of 19 patients (42%) were hospitalized, and 15 of 19 (79%) needed treatment with plasma exchange or immunoglobulins; three of 19 (16%) were admitted to the intensive care unit. During EFG, none of the patients was hospitalized and only one patient required plasma exchange and intravenous immunoglobulins. No major side effects or infusion-related reactions occurred. CONCLUSIONS: We observed that EFG was safe and modified significantly the course of the disease along a 14-month follow-up. Our experience strengthens the role of FcRn inhibition as an effective new tool for long-term treatment of gMG.
Assuntos
Atividades Cotidianas , Miastenia Gravis , Recém-Nascido , Humanos , Miastenia Gravis/tratamento farmacológico , Autoanticorpos , Troca PlasmáticaRESUMO
BACKGROUND: In facioscapulohumeral muscular dystrophy (FSHD), it is not known whether physical activity (PA) practiced at young age is associated with the clinical presentation of disease. To assess this issue, we performed a retrospective cohort study concerning the previous practice of sports and, among them, those with medium-high cardiovascular commitment in clinically categorized carriers of a D4Z4 reduced allele (DRA). METHODS: People aged between 18 and 60 were recruited as being DRA carriers. Subcategory (classical phenotype, A; incomplete phenotype, B; asymptomatic carriers, C; complex phenotype, D) and FSHD score, which measures muscle functional impairment, were assessed for all participants. Information on PAs was retrieved by using an online survey dealing with the practice of sports at a young age. RESULTS: 368 participants were included in the study, average age 36.6 years (SD = 9.4), 47.6% male. The FSHD subcategory A was observed in 157 (42.7%) participants with average (± SD) FSHD score of 5.8 ± 3.0; the incomplete phenotype (category B) in 46 (12.5%) participants (average score 2.2 ± 1.7) and the D phenotype in 61 (16.6%, average score 6.5 ± 3.8). Asymptomatic carriers were 104 (subcategory C, 28.3%, score 0.0 ± 0.2). Time from symptoms onset was higher for patients with A (15.8 ± 11.1 years) and D phenotype (13.3 ± 11.9) than for patients with B phenotype (7.3 ± 9.0). The practice of sports was associated with lower FSHD score (-17%) in participants with A phenotype (MR = 0.83, 95% CI = 0.73-0.95, p = 0.007) and by 33% in participants with D phenotype (MR = 0.67, 95% CI = 0.51-0.89, p = 0.006). Conversely, no improvement was observed in participants with incomplete phenotype with mild severity (B). CONCLUSIONS: PAs at a young age are associated with a lower clinical score in the adult A and D FSHD subcategories. These results corroborate the need to consider PAs at the young age as a fundamental indicator for the correct clinical stratification of the disease and its possible evolution.
Assuntos
Distrofia Muscular Facioescapuloumeral , Esportes , Adulto , Humanos , Masculino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Feminino , Distrofia Muscular Facioescapuloumeral/diagnóstico , Estudos Retrospectivos , Exercício Físico , AlelosRESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of both upper and lower motor neurons (MNs). The main clinical features of ALS are motor function impairment, progressive muscle weakness, muscle atrophy and, ultimately, paralysis. Intrinsic skeletal muscle deterioration plays a crucial role in the disease and contributes to ALS progression. Currently, there are no effective treatments for ALS, highlighting the need to obtain a deeper understanding of the molecular events underlying degeneration of both MNs and muscle tissue, with the aim of developing successful therapies. Muscle tissue is enriched in a group of microRNAs called myomiRs, which are effective regulators of muscle homeostasis, plasticity and myogenesis in both physiological and pathological conditions. After providing an overview of ALS pathophysiology, with a focus on the role of skeletal muscle, we review the current literature on myomiR network dysregulation as a contributing factor to myogenic perturbations and muscle atrophy in ALS. We argue that, in view of their critical regulatory function at the interface between MNs and skeletal muscle fiber, myomiRs are worthy of further investigation as potential molecular targets of therapeutic strategies to improve ALS symptoms and counteract disease progression.
Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Homeostase , Humanos , Neurônios Motores , Músculo EsqueléticoRESUMO
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive, irreversible loss of upper and lower motor neurons (UMNs, LMNs). MN axonal dysfunctions are emerging as relevant pathogenic events since the early ALS stages. However, the exact molecular mechanisms leading to MN axon degeneration in ALS still need to be clarified. MicroRNA (miRNA) dysregulation plays a critical role in the pathogenesis of neuromuscular diseases. These molecules represent promising biomarkers for these conditions since their expression in body fluids consistently reflects distinct pathophysiological states. Mir-146a has been reported to modulate the expression of the NFL gene, encoding the light chain of the neurofilament (NFL) protein, a recognized biomarker for ALS. Here, we analyzed miR-146a and Nfl expression in the sciatic nerve of G93A-SOD1 ALS mice during disease progression. The miRNA was also analyzed in the serum of affected mice and human patients, the last stratified relying on the predominant UMN or LMN clinical signs. We revealed a significant miR-146a increase and Nfl expression decrease in G93A-SOD1 peripheral nerve. In the serum of both ALS mice and human patients, the miRNA levels were reduced, discriminating UMN-predominant patients from the LMN ones. Our findings suggest a miR-146a contribution to peripheral axon impairment and its potential role as a diagnostic and prognostic biomarker for ALS.
Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Degeneração Neural , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Degeneração Neural/diagnóstico , Degeneração Neural/genética , Degeneração Neural/metabolismo , Nervos Periféricos/patologia , Superóxido Dismutase-1/genética , Axônios/patologia , Proteínas de Neurofilamentos , Diagnóstico Precoce , Progressão da DoençaRESUMO
BACKGROUND: Natural history of spinal muscular atrophy (SMA) in adult age has not been fully elucidated yet, including factors predicting disease progression and response to treatments. Aim of this retrospective, cross-sectional study, is to investigate motor function across different ages, disease patterns and gender in adult SMA untreated patients. METHODS: Inclusion criteria were as follows: (1) clinical and molecular diagnosis of SMA2, SMA3 or SMA4 and (2) clinical assessments performed in adult age (>18 years). RESULTS: We included 64 (38.8%) females and 101 (61.2%) males (p=0.0025), among which 21 (12.7%) SMA2, 141 (85.5%) SMA3 and 3 (1.8%) SMA4. Ratio of sitters/walkers within the SMA3 subgroup was significantly (p=0.016) higher in males (46/38) than in females (19/38). Median age at onset was significantly (p=0.0071) earlier in females (3 years; range 0-16) than in males (4 years; range 0.3-28), especially in patients carrying 4 SMN2 copies. Median Hammersmith Functional Rating Scale Expanded scores were significantly (p=0.0040) lower in males (16, range 0-64) than in females (40, range 0-62); median revised upper limb module scores were not significantly (p=0.059) different between males (24, 0-38) and females (33, range 0-38), although a trend towards worse performance in males was observed. In SMA3 patients carrying three or four SMN2 copies, an effect of female sex in prolonging ambulation was statistically significant (p=0.034). CONCLUSIONS: Our data showed a relevant gender effect on SMA motor function with higher disease severity in males especially in the young adult age and in SMA3 patients.
Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Adulto Jovem , Masculino , Humanos , Feminino , Pré-Escolar , Adolescente , Atrofias Musculares Espinais da Infância/epidemiologia , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Estudos Transversais , Estudos Retrospectivos , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Progressão da DoençaRESUMO
Motor neuron diseases (MNDs) are neurodegenerative disorders characterized by upper and/or lower MN loss. MNDs include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). Despite variability in onset, progression, and genetics, they share a common skeletal muscle involvement, suggesting that it could be a primary site for MND pathogenesis. Due to the key role of muscle-specific microRNAs (myomiRs) in skeletal muscle development, by real-time PCR we investigated the expression of miR-206, miR-133a, miR-133b, and miR-1, and their target genes, in G93A-SOD1 ALS, Δ7SMA, and KI-SBMA mouse muscle during disease progression. Further, we analyzed their expression in serum of SOD1-mutated ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets, in ALS, SMA, and SBMA mice, revealing a common pathogenic feature associated with muscle impairment. A similar myomiR signature was observed in patients' sera. In particular, an up-regulation of miR-206 was identified in both mouse muscle and serum of human patients. Our overall findings highlight the role of myomiRs as promising biomarkers in ALS, SMA, and SBMA. Further investigations are needed to explore the potential of myomiRs as therapeutic targets for MND treatment.
Assuntos
Esclerose Lateral Amiotrófica , Atrofia Bulboespinal Ligada ao X , MicroRNAs , Mutação de Sentido Incorreto , Superóxido Dismutase-1 , Superóxido Dismutase , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismoRESUMO
OBJECTIVE: To retrospectively investigate safety and efficacy of nusinersen in a large cohort of adult Italian patients with spinal muscular atrophy (SMA). METHODS: Inclusion criteria were: (1) clinical and molecular diagnosis of SMA2 or SMA3; (2) nusinersen treatment started in adult age (>18 years); (3) clinical data available at least at baseline (T0-beginning of treatment) and 6 months (T6). RESULTS: We included 116 patients (13 SMA2 and 103 SMA3) with median age at first administration of 34 years (range 18-72). The Hammersmith Functional Rating Scale Expanded (HFMSE) in patients with SMA3 increased significantly from baseline to T6 (median change +1 point, p<0.0001), T10 (+2, p<0.0001) and T14 (+3, p<0.0001). HFMSE changes were independently significant in SMA3 sitter and walker subgroups. The Revised Upper Limb Module (RULM) in SMA3 significantly improved between T0 and T14 (median +0.5, p=0.012), with most of the benefit observed in sitters (+2, p=0.018). Conversely, patients with SMA2 had no significant changes of median HFMSE and RULM between T0 and the following time points, although a trend for improvement of RULM was observed in those with some residual baseline function. The rate of patients showing clinically meaningful improvements (as defined during clinical trials) increased from 53% to 69% from T6 to T14. CONCLUSIONS: Our data provide further evidence of nusinersen safety and efficacy in adult SMA2 and SMA3, with the latter appearing to be cumulative over time. In patients with extremely advanced disease, effects on residual motor function are less clear.
Assuntos
Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/uso terapêutico , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Adolescente , Adulto , Idade de Início , Idoso , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Estado Funcional , Humanos , Injeções Espinhais , Itália , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Postura Sentada , Atrofias Musculares Espinais da Infância/fisiopatologia , Resultado do Tratamento , Capacidade Vital , Teste de Caminhada , Caminhada , Adulto JovemRESUMO
INTRODUCTION: Myasthenia gravis (MG) is an autoimmune disease whose period of typical onset is around 20-40 years (i.e., early onset), thus in the peak of working age, or around 60-80 years (i.e., late onset). However, the information on work-related issues and employment status are sparse and not systematically reported. Therefore, we performed a systematic literature review with meta-analysis to address the employment status of MG patients. METHODS: We searched for papers reporting employment status on participants with MG published between January 2000 and May 2019. Information on employment was extracted. Random-effects models were used to produce meta-analytic estimates for the proportion of employed patients. RESULTS: In total, 1,045 records were retrieved, of which 19 fitted the inclusion criteria. In total, 3,600 participants (average age 47.5, range 35-60) were included in the studies and 1,579 of them were employed. The proportion of employed patients varied from 28 to 82%, with an extreme heterogeneity between studies. Overall, the pooled proportion of workers was 50% (95% CI 41-60%). Subgroup analyses suggested a possible, although not significant, higher proportion of workers among women, younger participants, those with a higher level of education, shorter MG duration, and less frequently thymectomized, whereas a lower proportion was observed among those with generalized, bulbar, and respiratory symptoms. CONCLUSIONS: The results of our meta-analysis show that the percentage of employment is considerably low if we take into account that the mean age of MG patients involved in the included studies was around 48 years, thus in peak of working life. Therefore, it is important to understand what kind of influence MG exerts on work dynamics.
Assuntos
Emprego/estatística & dados numéricos , Miastenia Gravis/epidemiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission currently treated with chronic immunosuppression. Inter-subject variation in treatment response and side effects highlight the need for personalized therapies by identification of biomarkers predictive of drug efficacy in individual patients, still lacking in MG. MicroRNAs (miRNAs) play a key role in immune response and drug metabolism modulation. This study, part of an Italian-Israeli collaborative project, aimed to identify specific miRNAs as biomarkers associated with immunosuppressive treatment response in MG patients. Whole miRNome sequencing, followed by miRNA validation by real-time PCR, was performed in peripheral blood from Italian MG patients (nâ¯=â¯40) classified as responder and non-responder to immunosuppressive therapies. MiRNA sequencing identified 41 miRNAs differentially expressed in non-responder compared to responder Italian MG patients. Validation phase pointed out three miRNAs, miR-323b-3p, -409-3p, and -485-3p, clustered on chromosome 14q32.31, the levels of which were significantly decreased in non-responder versus responder patients, whereas miR-181d-5p and -340-3p showed an opposite trend. ROC curve analysis showed sensitivity and specificity performance results indicative of miR-323b-3p, -409-3p, and -485-3p predictive value for responsiveness to immunosuppressive drugs in MG. Validated miRNAs were further analyzed in blood from responder and non-responder MG patients of the Israeli population (nâ¯=â¯33), confirming a role for miR-323b-3p, -409-3p, -485-3p, -181d-5p and -340-3p as biomarkers of drug efficacy. Gene Ontology enrichment analysis, mRNA target prediction, and in silico modeling for function of the identified miRNAs disclosed functional involvement of the five miRNAs, and their putative target genes, in both immune (i.e. neurotrophin TRK and Fc-epsilon receptor signaling pathways) and drug metabolism processes. Our overall findings thus revealed a blood "miR-323b-3p, -409-3p, -485-3p, -181d-5p, and -340-3p" signature associated with drug responsiveness in MG patients. Its identification sets the basis for precision medicine approaches based on "pharmacomiRs" as biomarkers of drug responsiveness in MG, promising to improve therapeutic success in a cost/effective manner.
Assuntos
MicroRNAs/genética , Miastenia Gravis/genética , Adulto , Biomarcadores/sangue , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , RNA Mensageiro/genética , Curva ROC , Transdução de Sinais/genéticaRESUMO
Growing evidence suggests that amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disease that primarily affects motor neurons and, though less evidently, other neuronal systems. About 75% of sporadic and familial ALS patients show a subclinical degeneration of small-diameter fibers, as measured by loss of intraepidermal nerve fibers (IENFs), but the underlying biological causes are unknown. Small-diameter fibers are derived from small-diameter sensory neurons, located in dorsal root ganglia (DRG), whose biochemical hallmark is the expression of type III intermediate filament peripherin. We tested here the hypothesis that small-diameter DRG neurons of ALS mouse model SOD1(G93A)suffer from axonal stress and investigated the underlying molecular mechanism. We found that SOD1(G93A)mice display small fiber pathology, as measured by IENF loss, which precedes the onset of the disease. In vitro small-diameter DRG neurons of SOD1(G93A)mice show axonal stress features and accumulation of a peripherin splice variant, named peripherin56, which causes axonal stress through disassembling light and medium neurofilament subunits (NFL and NFM, respectively). Our findings first demonstrate that small-diameter DRG neurons of the ALS mouse model SOD1(G93A)display axonal stress in vitro and in vivo, thus sustaining the hypothesis that the effects of ALS disease spread beyond motor neurons. These results suggest a molecular mechanism for the small fiber pathology found in ALS patients. Finally, our data agree with previous findings, suggesting a key role of peripherin in the ALS pathogenesis, thus highlighting that DRG neurons mirror some dysfunctions found in motor neurons.
Assuntos
Processamento Alternativo , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/patologia , Gânglios Espinais/patologia , Periferinas/genética , Superóxido Dismutase-1/genética , Alanina/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Glicina/metabolismo , Humanos , Camundongos , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Periferinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologiaRESUMO
OBJECTIVE: We investigated the association of single nucleotide polymorphisms (SNPs) in drug-metabolizing enzymes and transporters (DMETs) with the response to azathioprine (AZA) in patients affected by myasthenia gravis (MG) to determine possible genotype-phenotype correlations. PATIENTS AND METHODS: Genomic DNA from 180 AZA-treated MG patients was screened through the Affymetrix DMET platform, which characterizes 1931 SNPs in 225 genes. The significant SNPs, identified to be involved in AZA response, were subsequently validated by allelic discrimination and direct sequencing. SNP analysis was carried out using the SNPassoc R package and the haploblocks were determined using haploview software. RESULTS: We studied 127 patients in the discovery phase and 53 patients in the validation phase. We showed that two SNPs (rs8058694 and rs8058696) found in ATP-binding cassette subfamily C member 6, a subfamily member of ATP-binding cassette genes, constituted a new haplotype associated with AZA response in MG patients in the discovery cohort (P=0.011; odds ratio: 0.40; 95% confidence interval: 0.20-0.83) and in the combined cohort (P=0.04; odds ratio: 1.58). CONCLUSION: These findings highlight the role that the ATP-binding cassette subfamily C member 6 haplotype may play in AZA drug response. In view of the significant effects and AZA intolerance, these novel SNPs should be taken into consideration in pharmacogenetic profiling for AZA.
Assuntos
Azatioprina/administração & dosagem , Estudos de Associação Genética/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Miastenia Gravis/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Azatioprina/farmacocinética , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/genética , Variantes Farmacogenômicos , Análise de Sequência de DNARESUMO
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. Considerable evidence indicates that early skeletal muscle atrophy plays a crucial role in the disease pathogenesis, leading to an altered muscle-motor neuron crosstalk that, in turn, may contribute to motor neuron degeneration. Currently, there is no effective treatment for ALS, highlighting the need to dig deeper into the pathological mechanisms for developing innovative therapeutic strategies. FM19G11 is a novel drug able to modulate the global cellular metabolism, but its effects on ALS skeletal muscle atrophy and mitochondrial metabolism have never been evaluated, yet. This study investigated whether FM19G11-loaded nanoparticles (NPs) may affect the bioenergetic status in myoblasts isolated from G93A-SOD1 mice at different disease stages. We found that FM19G1-loaded NP treatment was able to increase transcriptional levels of Akt1, Akt3, Mef2a, Mef2c and Ucp2, which are key genes associated with cell proliferation (Akt1, Akt3), muscle differentiation (Mef2c), and mitochondrial activity (Ucp2), in G93A-SOD1 myoblasts. These cells also showed a significant reduction of mitochondrial area and networks, in addition to decreased ROS production after treatment with FM19G11-loaded NPs, suggesting a ROS clearance upon the amelioration of mitochondrial dynamics. Our overall findings demonstrate a significant impact of FM19G11-loaded NPs on muscle cell function and bioenergetic status in G93A-SOD1 myoblasts, thus promising to open new avenues towards possible adoption of FM19G11-based nanotherapies to slow muscle degeneration in the frame of ALS and muscle disorders.
Assuntos
Esclerose Lateral Amiotrófica , Benzamidas , Nanopartículas , Doenças Neurodegenerativas , Camundongos , Animais , Superóxido Dismutase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Mioblastos/metabolismo , Atrofia/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Superóxido Dismutase/metabolismoRESUMO
BACKGROUND AND OBJECTIVES: The diagnostic process for myofibrillar myopathies (MFM) and distal myopathies (DM) is particularly complex because of the large number of causative genes, the existence of still molecularly undefined disease entities, and the overlapping features between the 2 categories. This study aimed to characterize a large cohort of patients affected by MFM and DM and identify the most important diagnostic and prognostic aspects of these diseases. METHODS: Patients with either a myopathological diagnosis of MFM or a clinical diagnosis of DM were included in this retrospective multicentric national study. Demographic, genetic, clinical, and histopathologic data of anonymized patients were collected from the neuromuscular centers of the Italian Association of Myology network. RESULTS: Data regarding 132 patients with MFM (mean age 57.0 ± 15.8 years, 49% female) and 298 patients with DM (mean age 50.7 ± 15.9 years, 40% female) were gathered from 20 neuromuscular centers. 69 patients fulfilled the criteria for both groups (distal myopathies with myofibrillar pathology, DM-MP). Molecular confirmation was achieved in 63% of the patients. Fifty-two percent of the patients with MFM carried pathogenic variants in either DES (n = 30), MYOT (n = 20), or DNAJB6 (n = 18), which were also the most frequent disease-causing genes in DM-MP, while GNE (n = 44) and MYH7 (n = 23) were the genes most commonly carrying pathogenic variants in DM. The mean age at onset varied from <25 years in patients with causative variants in MYH7 and DYSF to 59 years in patients with myotilinopathies. Cardiac involvement was reported in 29% of patients with MFM and 16% of patients with DM, with DES and MYH7 variants significantly associated with the development of cardiomyopathy. Respiratory impairment was more prevalent in patients with TTN and DES variants and rare in other disorders such as GNE myopathy and dysferlinopathies, which were instead associated, together with DNAJB6-related and PLIN4-related myopathies, with the risk of losing ambulation during the disease course. DISCUSSION: The Italian cohort of patients with MFM and DM recapitulates the phenotypic heterogeneity and the partial overlap between the 2 groups. However, in relative contrast to the encountered phenotypic variability, only 5 genes accounted for most of the molecular diagnoses. Specific genetic entities are associated with significantly increased risk of developing cardiorespiratory complications or loss of ambulation, which has relevant prognostic implications.
Assuntos
Miopatias Distais , Miopatias Congênitas Estruturais , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Itália , Adulto , Miopatias Distais/genética , Miopatias Distais/patologia , Miopatias Distais/epidemiologia , Estudos Retrospectivos , Idoso , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologiaRESUMO
Introduction/Aims HyperCKemia is considered a hallmark of neuromuscular diseases. It can be either isolated or associated with cramps, myalgia, weakness, myoglobinuria, or rhabdomyolysis, suggesting a metabolic myopathy. The aim of this work was to investigate possible genetic causes in order to help diagnose patients with recurrent hyperCKemia or clinical suspicion of inherited metabolic myopathy. Methods A cohort of 139 patients (90 adults and 49 children) was analyzed using a custom panel containing 54 genes associated with hyperCKemia. Results A definite genetic diagnosis was obtained in 15.1% of cases, while candidate variants or variants of uncertain significance were found in a further 39.5%. Similar percentages were obtained in patients with infantile or adult onset, with some different causative genes. RYR1 was the gene most frequently identified, either with single or compound heterozygous variants, while ETFDH variants were the most common cause for recessive cases. In one patient, mRNA analysis allowed identifying a large LPIN1 deletion missed by DNA sequencing, leading to a certain diagnosis. Conclusion These data confirm the high genetic heterogeneity of hyperCKemia and metabolic myopathies. The reduced diagnostic yield suggests the existence of additional genes associated with this condition but also allows speculation that a significant number of cases presenting with hyperCKemia or muscle symptoms are due to extrinsic, not genetic, factors.
Assuntos
Doenças Musculares , Doenças Neuromusculares , Rabdomiólise , Adulto , Criança , Humanos , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Neuromusculares/genética , Mialgia/complicações , Mialgia/genética , Rabdomiólise/genética , Rabdomiólise/complicações , Músculos , Fosfatidato FosfataseRESUMO
Due to poor data in literature, we aimed to investigate the respiratory function in a large cohort of naïve Italian adult (≥18 years) SMA patients in a multi-centric cross-sectional study. The following respiratory parameters were considered: forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and need for non-invasive ventilation (NIV). We included 145 treatment-naïve adult patients (SMA2=18, SMA3=125; SMA4=2), 58 females (40 %), with median age at evaluation of 37 years (range 18-72). Fifty-six (37 %) and 41 (31 %) patients had abnormal (<80 %) values of FVC and FEV1, respectively. Fourteen (14 %) patients needed NIV, started at median age of 21 (range 4-68). Motor function, measured by Hammersmith Functional Motor Scale Expanded and Revised Upper Limb Module as well as SMA2, loss of walking ability, surgery for scoliosis, use of NIV, and cough assisting device (CAD) were all significantly associated to lower FVC and FEV1 values, while no association with age at baseline, disease duration, gender or 6 min walking test was observed, except for a correlation between FVC and age in SMA3 walkers (p < 0.05). In conclusion, respiratory function in adult SMA patients is relatively frequently impaired, substantially stable, and significantly correlated with motor function and disease severity.
Assuntos
Atrofia Muscular Espinal , Respiração , Adulto , Feminino , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Capacidade Vital , Volume Expiratório ForçadoRESUMO
BACKGROUND: The development of e-health technologies for teleconsultation and exchange of knowledge is one of the core purposes of European Reference Networks (ERNs), including the ERN EURO-NMD for rare neuromuscular diseases. Within ERNs, the Clinical Patient Management System (CPMS) is a web-based platform that seeks to boost active collaboration within and across the network, implementing data sharing. Through CPMS, it is possible to both discuss patient cases and to make patients' data available for registries and databases in a secure way. In this view, CPMS may be considered a sort of a temporary storage for patients' data and an effective tool for data sharing; it facilitates specialists' consultation since rare diseases (RDs) require multidisciplinary skills, specific, and outstanding clinical experience. Following European Union (EU) recommendation, and to promote the use of CPMS platform among EURO-NMD members, a twelve-month pilot project was set up to train the 15 Italian Health Care Providers (HCPs). In this paper, we report the structure, methods, and results of the teaching course, showing that tailored, ERN-oriented, training can significantly enhance the profitable use of the CPMS. RESULTS: Throughout the training course, 45 professionals learned how to use the many features of the CPMS, eventually opening 98 panels of discussion-amounting to 82% of the total panels included in the EURO-NMD. Since clinical, genetic, diagnostic, and therapeutic data of patients can be securely stored within the platform, we also highlight the importance of this platform as an effective tool to discuss and share clinical cases, in order to ease both case solving and data storing. CONCLUSIONS: In this paper, we discuss how similar course could help implementing the use of the platform, highlighting strengths and weaknesses of e-health for ERNs. The expected result is the creation of a "map" of neuromuscular patients across Europe that might be improved by a wider use of CPMS.