Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 72(4): 964-971, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161751

RESUMO

Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this "splitting" scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.].


Assuntos
Evolução Biológica , Aranhas , Animais , Filogenia , Aranhas/genética
2.
Am Nat ; 201(3): 472-490, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848513

RESUMO

AbstractLight availability is highly variable, yet predictable, over various timescales and is expected to play an important role in the evolution of visual signals. Courtship displays of the wolf spider genus Schizocosa always involve the use of substrate-borne vibrations; however, there is substantial variation in the presence and complexity of visual displays among species. To gain insight into the role the light environment plays in the evolution of courtship displays, we tested the function of visual courtship signaling across distinct light environments in four species of Schizocosa that vary in their degree of ornamentation and dynamic visual signals. We ran mating and courtship trials at three light intensities (bright, dim, and dark) and tested the hypothesis that ornamentation interacts with light environment. We also examined each species' circadian activity patterns. The effects of the light environment on courtship and mating varied between species, as did circadian activity patterns. Our results suggest that femur pigmentation may have evolved for diurnal signaling, whereas tibial brushes may function to increase signal efficacy under dim light. Additionally, we found evidence for light-dependent changes in selection on male traits, illustrating that short-term changes in light intensity have the potential for strong effects on the dynamics of sexual selection.


Assuntos
Luz , Aranhas , Masculino , Animais , Especificidade da Espécie , Pigmentação , Corte
3.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688774

RESUMO

Fusarium oxysporum,F. graminearum,F. acuminatum,F. equiseti,F. proliferatum,F. solani, and Rhizoctonia solani are soil-borne fungal pathogens that cause substantial yield loss in a widespread list of crops worldwide. The objective of this study was to develop a panel of TaqMan assays for the detection and quantification of these six widespread soil-borne fungal species using real-time polymerase chain reaction (qPCR). The primers and probes were designed based on the intergenic spacer ribosomal RNA and translation elongation factor 1-alpha gene (tef1). These assays, although not multiplexed, can be performed simultaneously as they have similar reaction conditions, allowing more efficiency when targeting multiple pathogens in a sample. The assays presented high efficiency (94.3%-108.9%) and sensitivity, with a limit of detection of 0.05 picograms (50 femtograms) of target DNA. Results from an assay targeting 19 non-target and closely related species confirmed the specificity of the developed assays. The assays were also evaluated to detect the target species in different matrices, such as soil and plant material. This panel of qPCR assays is an additional tool that can be used by plant pathologists, microbiologists, plant breeders, diagnostic clinics, and other researchers interested in these fungal species.


Assuntos
Fusarium , Glycine max , Glycine max/microbiologia , Fusarium/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Primers do DNA , Doenças das Plantas/microbiologia , DNA Fúngico/genética
4.
Plant Dis ; 107(11): 3422-3429, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37093164

RESUMO

Frogeye leaf spot (FLS), caused by Cercospora sojina, is an important foliar disease affecting soybean in the United States. A meta-analytic approach including 39 fungicide trials conducted from 2012 to 2021 across eight states (Alabama, Arkansas, Illinois, Iowa, Kentucky, Louisiana, Mississippi, Tennessee) was used to assess the relationship between FLS severity and soybean yield. Correlation and regression analyses were performed separately to determine Fisher's transformation of correlation coefficients (Zr), intercept (ß0) and slope (ß1). Disease pressure (low severity, ≤34.5; high severity, >34.5%) and yield class (low, ≤3,352; high, >3,352 kg/ha) were included as categorical moderators. Pearson's [Formula: see text], obtained from back-transforming the [Formula: see text]r estimated by an overall random-effects model, showed a significant negative linear relationship between FLS severity and yield ([Formula: see text] = -0.60). The [Formula: see text]r was affected by disease pressure (P = 0.0003) but not by yield class (P = 0.8141). A random-coefficient model estimated a slope of -19 kg/ha for each percent severity for a mean attainable yield of 3,719.9 kg/ha. Based on the overall mean (95% CI) of the intercept and slope estimated by the random-coefficients model, the estimated overall relative damage coefficient was 0.51% (0.36 to 0.69), indicating that a percent increase in FLS severity reduced yield by 0.51%. The best model included yield class as a covariate, and population-average intercepts differed significantly between low (3,455.1 kg/ha) and high (3,842.7 kg/ha) yield classes. This highlights the potential impact of FLS on soybean yield if not managed and may help in disease management decisions.


Assuntos
Fungicidas Industriais , Glycine max , Estados Unidos , Doenças das Plantas , Illinois , Iowa
5.
Plant Dis ; 107(11): 3487-3496, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37157104

RESUMO

Frogeye leaf spot (FLS), caused by Cercospora sojina, is an economically important disease of soybean in the United States. Data from 66 uniform fungicide trials (UFTs) conducted from 2012 to 2021 across eight states (Alabama, Arkansas, Illinois, Iowa, Kentucky, Louisiana, Mississippi, and Tennessee) were gathered and analyzed to determine the efficacy and profitability of the following fungicides applied at the beginning pod developmental stage (R3): azoxystrobin + difenoconazole (AZOX + DIFE), difenoconazole + pydiflumetofen (DIFE + PYDI), pyraclostrobin (PYRA), pyraclostrobin + fluxapyroxad + propiconazole (PYRA + FLUX + PROP), tetraconazole (TTRA), thiophanate-methyl (TMET), thiophanate-methyl + tebuconazole (TMET + TEBU), and trifloxystrobin + prothioconazole (TFLX + PROT). A network meta-analytic model was fitted to the log of the means of FLS severity data and to the nontransformed mean yield for each treatment, including the nontreated. The percent reduction in disease severity (%) and the yield response (kg/ha) relative to the nontreated was the lowest for PYRA (11%; 136 kg/ha) and the greatest for DIFE + PYDI (57%; 441 kg/ha). A significant decline in efficacy over time was detected for PYRA (18 percentage points [p.p.]), TTRA (27 p.p.), AZOX + DIFE (18 p.p.), and TMET + TEBU (19 p.p.) by using year as a continuous covariate in the model. Finally, probabilities of breaking even were the greatest (>65%) for the most effective fungicide DIFE + PYDI and the lowest (<55%) for PYRA. Results of this meta-analysis may be useful to support decisions when planning fungicide programs.


Assuntos
Fungicidas Industriais , Estados Unidos , Fungicidas Industriais/farmacologia , Glycine max , Tiofanato , Kentucky
6.
J Nematol ; 55(1): 20230030, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818528

RESUMO

We previously reported soybean fields double-cropped with winter wheat having reduced soybean cyst nematode (SCN) (Heterodera glycines) counts compared to fallow. A follow-up metagenomics study identified several fungal and bacterial taxa enriched in wheat fields, and some were reported to parasitize SCN. Knowing that phytocompounds with potential nematicidal activity are released via wheat roots and stubble, we implemented a dichloromethane-based extraction method and a gas chromatography-mass spectrometry (GCMS) system to investigate soil chemical profiles of samples collected from these fields and review the potential nematicidal activity of compounds with higher concentration in double cropping fields. 51 compounds were detected during the GCMS analysis, eight with unknown identification. Several compounds, including multiple fatty acids, had larger relative peak areas when double-cropped, compared to fallow samples. This study, along with our previously published one, provided a better understanding of the mechanisms that govern the effect of wheat on SCN populations. Rather than driven by a single mechanism, the suppression of SCN in soybean fields double-cropped with winter wheat was potentially linked to enriched microbial communities, increased populations of beneficial organisms, and higher concentrations of chemicals with potential nematicidal activity. To our knowledge, this is the first study using GCMS to characterize soil chemical profiles in soybean fields double-cropped with winter wheat regarding the suppression of SCN populations.

7.
Mol Phylogenet Evol ; 169: 107397, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031456

RESUMO

Members of the Nearctic spider genus Schizocosa Chamberlin, 1904 have garnered much attention in behavioral studies and over many decades, a number of species have developed as model systems for investigating patterns of sexual selection and multimodal communication. Many of these studies have employed a comparative approach using putative, but not rigorously tested, sister species pairs that have distinctive morphological traits and attendant behaviors. Despite past emphasis on the efficacy of these presumably comparative-based studies of closely related species, generating a robust phylogenetic hypothesis for Schizocosa has been an ongoing challenge. Here, we apply a phylogenomic approach using anchored hybrid enrichment to generate a data set comprising over 400 loci representing a comprehensive taxonomic sample of 23 Nearctic Schizocosa. Our sampling also includes numerous outgroup lycosid genera that allow for a robust evaluation of genus monophyly. Based on analyses using concatenation and coalescent-based methods, we recover a well-supported phylogeny that infers the following: 1) The New World Schizocosa do not form a monophyletic group; 2) Previous hypotheses of North American species require reconsideration along with the composition of species groups; 3) Multiple longstanding model species are not genealogically exclusive and thus are not "good" species; 4) This updated phylogenetic framework establishes a new working paradigm for studying the evolution of characters associated with reproductive communication and mating. Ancestral character state reconstructions show a complex pattern of homoplasy that has likely obfuscated previous attempts to reconstruct relationships and delimit species. Important characters presumably related to sexual selection, such as foreleg pigmentation and dense bristle formation, have undergone repeated gain and loss events, many of which have led to increased morphological divergence between sister-species. Evaluation of these traits in a comparative framework illuminates how sexual selection and natural selection influence character evolution and provides a model for future studies of multimodal communication evolution and function.


Assuntos
Aranhas , Animais , Fenótipo , Filogenia , Seleção Genética , Aranhas/genética , Incerteza
8.
Mol Phylogenet Evol ; 168: 107377, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954378

RESUMO

The family Nemesiidae was once among the most species-rich of mygalomorph spider families. However, over the past few decades both morphological and molecular studies focusing on mygalomorph phylogeny have recovered the group as paraphyletic. Hence, the systematics of the family Nemesiidae has more recently been controversial, with numerous changes at the family-group level and the recognition of the supra-familial clade Nemesioidina. Indeed, in a recent study by Opatova and collaborators, six nemesiid genera were transferred to the newly re-established family Pycnothelidae. Despite these changes, 12 South American nemesiid genera remained unplaced, and classified as incertae sedis due to shortcomings in taxon sampling. Accordingly, we evaluate the phylogenetic relationships of South American nemesioid species and genera with the principle aim of resolving their family level placement. Our work represents the most exhaustive phylogenomic sampling for South American Nemesiidae by including nine of the 12 genera described for the continent. Phylogenetic relationships were reconstructed using 457 loci obtained using the spider Anchored Hybrid Enrichment probe set. Based on these results Nemesiidae, Pycnothelidae, Microstigmatidae and Cyrtaucheniidae are not considered monophyletic. Our study also indicates that the lineage including the genus Fufius requires elevation to the family level (Rhytidicolidae Simon, 1903 (NEW RANK)). In Pycnothelidae, we recognize/delimit five subfamilies (Diplothelopsinae, Pionothelinae (NEW SUBFAMILY), Prorachiinae (NEW SUBFAMILY), Pselligminae (NEW RANK), Pycnothelinae). We also transfer all the 12 South American nemesiid genera to Pycnothelidae: Chaco, Chilelopsis, Diplothelopsis, Flamencopsis, Hermachura, Longistylus, Lycinus, Neostothis, Prorachias, Psalistopoides, Pselligmus, Rachias. Additionally, we transferred the microstigmatid genus Xenonemesia to Pycnothelidae, and we propose the following generic synonymies and species transfers: Neostothis and Bayana are junior synonyms of Pycnothele (NEW SYNONYMY), as P. gigas and P. labordai, respectively (NEW COMBINATIONS); Hermachura is a junior synonym of Stenoterommata (NEW SYNONYMY), as S. luederwaldti (NEW COMBINATION); Flamencopsis is a junior synonym of Chilelopsis (NEW SYNONYMY), as C. minima (NEW COMBINATION); and Diplothelopsis is a junior synonym of Lycinus (NEW SYNONYMY), as L. ornatus and L. bonariensis (NEW COMBINATIONS). Considering the transferred genera and synonymies, Pycnothelidae now includes 15 described genera and 137 species. Finally, these results provide a robust phylogenetic framework that includes enhanced taxonomic sampling, for further resolving the biogeography and evolutionary time scale for the family Pycnothelidae.


Assuntos
Aranhas , Animais , Filogenia , América do Sul , Aranhas/genética
9.
J Appl Microbiol ; 132(5): 3797-3811, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35226387

RESUMO

AIMS: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence. METHODS AND RESULTS: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species. CONCLUSION: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause.


Assuntos
Ascomicetos , Fusarium , Fusarium/genética , Rhizoctonia , Plântula , Glycine max
10.
Plant Dis ; 106(9): 2403-2414, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35171634

RESUMO

Pythium spp. is one of the major groups of pathogens that cause seedling diseases on soybean, leading to both preemergence and postemergence damping-off and root rot. More than 100 species have been identified within this genus, with Pythium irregulare, P. sylvaticum, P. ultimum var ultimum, and P. torulosum being particularly important for soybean production given their aggressiveness, prevalence, and abundance in production fields. This study investigated the antagonistic activity of potential biological control agents (BCAs) native to the U.S. Midwest against Pythium spp. First, in vitro screening identified BCAs that inhibit P. ultimum var. ultimum growth. Scanning electron microscopy demonstrated evidence of mycoparasitism of all potential biocontrol isolates against P. ultimum var. ultimum and P. torulosum, with the formation of appressorium-like structures, short hyphal branches around host hyphae, hook-shaped structures, coiling, and parallel growth of the mycoparasite along the host hyphae. Based on these promising results, selected BCAs were tested under field conditions against six different Pythium spp. Trichoderma afroharzianum 26 used alone and a mix of T. hamatum 16 + T. afroharzianum 19 used as seed treatments protected soybean seedlings from Pythium spp. infection, as BCA-treated plots had on average 15 to 20% greater plant stand and vigor than control plots. Our results also indicate that some of these potential BCAs could be added with a fungicide seed treatment with minimum inhibition occurring, depending on the fungicide active ingredient. This research highlights the need to develop tools incorporating biological control as a facet of soybean seedling disease management programs. The harnessing of native BCAs could be integrated with other management strategies to provide efficient control of seedling diseases.


Assuntos
Fungicidas Industriais , Pythium , Fungicidas Industriais/farmacologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Pythium/fisiologia , Plântula , Sementes , Glycine max
11.
Syst Biol ; 69(4): 671-707, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841157

RESUMO

The infraorder Mygalomorphae is one of the three main lineages of spiders comprising over 3000 nominal species. This ancient group has a worldwide distribution that includes among its ranks large and charismatic taxa such as tarantulas, trapdoor spiders, and highly venomous funnel-web spiders. Based on past molecular studies using Sanger-sequencing approaches, numerous mygalomorph families (e.g., Hexathelidae, Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae) have been identified as non-monophyletic. However, these data were unable to sufficiently resolve the higher-level (intra- and interfamilial) relationships such that the necessary changes in classification could be made with confidence. Here, we present a comprehensive phylogenomic treatment of the spider infraorder Mygalomorphae. We employ 472 loci obtained through anchored hybrid enrichment to reconstruct relationships among all the mygalomorph spider families and estimate the timeframe of their diversification. We sampled nearly all currently recognized families, which has allowed us to assess their status, and as a result, propose a new classification scheme. Our generic-level sampling has also provided an evolutionary framework for revisiting questions regarding silk use in mygalomorph spiders. The first such analysis for the group within a strict phylogenetic framework shows that a sheet web is likely the plesiomorphic condition for mygalomorphs, as well as providing insights to the ancestral foraging behavior for all spiders. Our divergence time estimates, concomitant with detailed biogeographic analysis, suggest that both ancient continental-level vicariance and more recent dispersal events have played an important role in shaping modern day distributional patterns. Based on our results, we relimit the generic composition of the Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae. We also elevate five subfamilies to family rank: Anamidae (NEW RANK), Euagridae (NEW RANK), Ischnothelidae (NEW RANK), Pycnothelidae (NEW RANK), and Bemmeridae (NEW RANK). Three families Entypesidae (NEW FAMILY), Microhexuridae (NEW FAMILY), and Stasimopidae (NEW FAMILY), and one subfamily Australothelinae (NEW SUBFAMILY) are newly proposed. Such a major rearrangement in classification, recognizing nine newly established family-level rank taxa, is the largest the group has seen in over three decades. [Biogeography; molecular clocks; phylogenomics; spider web foraging; taxonomy.].


Assuntos
Genoma/genética , Filogenia , Aranhas/classificação , Animais , Especificidade da Espécie
12.
BMC Evol Biol ; 20(1): 68, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539685

RESUMO

BACKGROUND: Mygalomorph spiders represent a diverse, yet understudied lineage for which genomic level data has only recently become accessible through high-throughput genomic and transcriptomic sequencing methods. The Aptostichus atomarius species complex (family Euctenizidae) includes two coastal dune endemic members, each with inland sister species - affording exploration of dune adaptation associated patterns at the transcriptomic level. We apply an RNAseq approach to examine gene family conservation across the species complex and test for patterns of positive selection along branches leading to dune endemic species. RESULTS: An average of ~ 44,000 contigs were assembled for eight spiders representing dune (n = 2), inland (n = 4), and atomarius species complex outgroup taxa (n = 2). Transcriptomes were estimated to be 64% complete on average with 77 spider reference orthologs missing from all taxa. Over 18,000 orthologous gene clusters were identified within the atomarius complex members, > 5000 were detected in all species, and ~ 4700 were shared between species complex members and outgroup Aptostichus species. Gene family analysis with the FUSTr pipeline identified 47 gene families appearing to be under selection in the atomarius ingroup; four of the five top clusters include sequences strongly resembling other arthropod venom peptides. The COATS pipeline identified six gene clusters under positive selection on branches leading to dune species, three of which reflected the preferred species tree. Genes under selection were identified as Cytochrome P450 2c15 (also recovered in the FUSTr analysis), Niemann 2 Pick C1-like, and Kainate 2 isoform X1. CONCLUSIONS: We have generated eight draft transcriptomes for a closely related and ecologically diverse group of trapdoor spiders, identifying venom gene families potentially under selection across the Aptostichus atomarius complex and chemosensory-associated gene families under selection in dune endemic lineages.


Assuntos
Evolução Molecular , Aranhas/genética , Transcriptoma , Animais , Genômica , Filogenia
13.
Mol Ecol ; 29(12): 2269-2287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32452095

RESUMO

Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimitation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, the Antrodiaetus unicolor species complex containing two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and use multiple lines of evidence for testing genetic exchangeability and ecological interchangeability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include structure, principal components analysis and a recently developed unsupervised machine learning approach (Variational Autoencoder). We evaluate ecological similarity by using large-scale ecological data for niche-based distribution modelling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches. Our study demonstrates the efficacy of genomic-scale data for recognizing cryptic species, suggesting that species delimitation with one data type, whether one mitochondrial gene or morphology, may underestimate true species diversity in morphologically homogenous taxa with low vagility.


Assuntos
Genes Mitocondriais , Filogenia , Aranhas , Animais , Biodiversidade , Sudeste dos Estados Unidos , Especificidade da Espécie , Aranhas/classificação , Aranhas/genética , Simpatria
14.
Mol Phylogenet Evol ; 151: 106900, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599078

RESUMO

Determining species boundaries forms an important foundation for biological research. However, the results of molecular species delimitation can vary with the data sets and methods that are used. Here we use a two-step approach to delimit species in the genus Heptathela, a group of primitively segmented trapdoor spiders that are endemic to Japanese islands. Morphological evidence suggests the existence of 19 species in the genus. We tested this initial species hypothesis by using six molecular species-delimitation methods to analyse 180 mitochondrial COI sequences of Heptathela sampled from across the known range of the genus. We then conducted a set of more focused analyses by sampling additional genetic markers from the subset of taxa that were inconsistently delimited by the single-locus analyses of mitochondrial DNA. Multilocus species delimitation was performed using two Bayesian approaches based on the multispecies coalescent. Our approach identified 20 putative species among the 180 sampled individuals of Heptathela. We suggest that our two-step approach provides an efficient strategy for delimiting species while minimizing costs and computational time.


Assuntos
Ilhas , Aranhas/genética , Animais , Teorema de Bayes , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Geografia , Japão , Funções Verossimilhança , Mitocôndrias/genética , Filogenia , Probabilidade , Especificidade da Espécie
15.
Syst Biol ; 68(4): 555-572, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517732

RESUMO

Instances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope's rule (phyletic size increase), Rensch's rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length $\ge$2) is the norm. Nephilid genera construct webs of exaggerated proportions, which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 anchored hybrid enrichment markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch's rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope's rule. Allometric analyses reject the converse, Rensch's rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve toward an optimum size (3.2-4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, and diagnosability. Spider families, as currently defined, tend to be between 37 million years old and 98 million years old, and Nephilidae is estimated at 133 Ma (97-146), thus deserving family status. We, therefore, resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous GeratonephilaPoinar and Buckley (2012), Herennia Thorell 1877, IndoetraKuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, Palaeonephila Wunderlich 2004 from Tertiary Baltic amber, and TrichonephilaDahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically ancient phenotype (over 100 Ma), as is eSSD, though their magnitudes vary by lineage.


Assuntos
Tamanho Corporal/genética , Filogenia , Caracteres Sexuais , Aranhas/classificação , Animais , Feminino , Masculino , Aranhas/anatomia & histologia , Aranhas/genética
16.
Plant Dis ; 104(7): 1949-1959, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32396055

RESUMO

Sudden death syndrome (SDS) caused by Fusarium virguliforme is among the most important diseases affecting soybean in the United States. The use of biological control agents (BCAs) such as Trichoderma spp. can be a valuable resource to suppress F. virguliforme populations. Therefore, this research focused on screening possible BCAs against F. virguliforme and evaluating mycoparasitism and the induction of systemic resistance as mechanisms underlying the antagonistic activity of selected BCAs against F. virguliforme. In total, 47 potential BCAs, including 41 Trichoderma isolates and 6 Mortierella isolates, were screened in a dual-plate assay. The most effective isolates belonged to the Trichoderma harzianum species and were able to inhibit F. virguliforme radial growth by up to 92%. Selected Trichoderma isolates were tested in the greenhouse and in a microplot study. They reduced root rot caused by F. virguliforme when the plants were coinoculated with the pathogen and the BCA. The tested BCA's ability to reduce F. virguliforme growth may be related to several mechanisms of action, including mycoparasitism and induction of defense-related genes in plants, as revealed by monitoring the expression of defense-related genes in soybean. Our results highlight the potential of native Trichoderma isolates to inhibit F. virguliforme growth and reduce SDS severity, providing the basis for future implementation of biological control in soybean production. More efforts are needed to implement the use of these approaches in production fields, and to deepen the current knowledge on the biology of these highly antagonistic isolates.


Assuntos
Fusarium , Trichoderma , Doenças das Plantas , Plântula , Glycine max
17.
Planta ; 247(2): 369-379, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29022094

RESUMO

MAIN CONCLUSION: Presented here is the first Echinochloa colona leaf transcriptome. Analysis of gene expression before and after herbicide treatment reveals that E. colona mounts a stress response upon exposure to herbicide. Herbicides are the most frequently used means of controlling weeds. For many herbicides, the target site is known; however, it is considerably less clear how plant gene expression changes in response to herbicide exposure. In this study, changes in gene expression in response to herbicide exposure in imazamox-sensitive (S) and- resistant (R) junglerice (Echinochloa colona L.) biotypes was examined. As no reference genome is available for this weed, a reference leaf transcriptome was generated. Messenger RNA was isolated from imazamox-treated- and untreated R and S plants and the resulting cDNA libraries were sequenced on an Illumina HiSeq2000. The transcriptome was assembled, annotated, and differential gene expression analysis was performed to identify transcripts that were upregulated or downregulated in response to herbicide exposure for both biotypes. Differentially expressed transcripts included transcription factors, protein-modifying enzymes, and enzymes involved in metabolism and signaling. A literature search revealed that members of the families represented in this analysis were known to be involved in abiotic stress response in other plants, suggesting that imazamox exposure induced a stress response. A time course study examining a subset of transcripts showed that expression peaked within 4-12 h and then returned to untreated levels within 48 h of exposure. Testing of plants from two additional biotypes showed a similar change in gene expression 4 h after herbicide exposure compared to the resistant and sensitive biotypes. This study shows that within 48 h junglerice mounts a stress response to imazamox exposure.


Assuntos
Echinochloa/genética , Herbicidas/farmacologia , Imidazóis/farmacologia , Transcriptoma/efeitos dos fármacos , Echinochloa/efeitos dos fármacos , Análise de Sequência de RNA , Estresse Fisiológico
18.
Mol Phylogenet Evol ; 127: 55-73, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29778724

RESUMO

Tarantula spider systematics has long been considered problematic. Species diagnosis and phylogenetic hypotheses have historically relied on morphological features, which are known to be relatively conserved and/or highly homoplastic across the family. Morphology-based attempts to clarify the phylogeny of the highly diverse New World Theraphosinae, have only been moderately successful, and the time-frame of tarantulas' evolution is nearly terra incognita. Here we present a molecular phylogenetic analysis of the Theraphosinae genus Bonnetina and related lineages, employing one mitochondrial (COI) and five nuclear (ITS1, EF1G, MID1IP1, MRPL44, and I3568) loci. We also perform ancestral state reconstruction of a newly formulated morphological data matrix. Our analysis includes 47 species placed in 17 genera and other undetermined lineages. We obtained well resolved and supported topologies. COI and EF1G substitution rates were much lower than the values generally accepted for mygalomorph evolution, with substantial rate heterogeneity among lineages. The origin of Theraphosinae was dated during the Late Cretaceous, followed by rapid diversification into the three recently proposed Theraphosinae tribes. North and Central American Hapalopini (including Bonnetina) form a monophyletic group that likely originated during the Oligocene to a dispersing ancestor from the then isolated South America. A clade that includes all but one Bonnetina species is estimated to have originated in the early Miocene and is the sister group of two morphologically divergent undescribed species. Morphological homoplasy is extensive across the tree. The two features that diagnose Bonnetina are homoplastic, but in combination still define the genus. Finally, we establish three groups of species within Bonnetina. Our results challenge the reliability of morphological characters for phylogenetic reconstruction in Theraphosinae, and indicate caution when interpreting Theraphosidae supra-specific classification in absence of a solid phylogenetic framework. They also question the dependability of universal substitution rates of COI and EF1G to calibrate phylogenetic analyses across Mygalomorphae.


Assuntos
Filogenia , Aranhas/classificação , Aranhas/genética , Animais , Ecossistema , Evolução Molecular , Loci Gênicos , Marcadores Genéticos , Variação Genética , Funções Verossimilhança , Reprodutibilidade dos Testes , Fatores de Tempo
19.
Mol Phylogenet Evol ; 126: 303-313, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29656103

RESUMO

The mygalomorph family Ctenizidae has a world-wide distribution and currently contains nine genera and 135 species. However, the monophyly of this group has long been questioned on both morphological and molecular grounds. Here, we use Anchored Hybrid Enrichment (AHE) to gather hundreds of loci from across the genome for reconstructing the phylogenetic relationships among the nine genera and test the monophyly of the family. We also reconstruct the possible ancestral ranges of the most inclusive clade recovered. Using AHE, we generate a supermatrix of 565 loci and 115,209 bp for 27 individuals. For the first time, analyses using all nine genera produce results definitively establishing the non-monophyly of Ctenizidae. A lineage formed exclusively by representatives of South African Stasimopus was placed as the sister group to the remaining taxa in the tree, and the Mediterranean Cteniza and Cyrtocarenum were recovered with high support as sister to exemplars of Euctenizidae, Migidae, and Idiopidae. All the remaining genera-Bothriocyrtum, Conothele, Cyclocosmia, Hebestatis, Latouchia, and Ummidia-share a common ancestor. Based on these results, we formally elevate this clade to the level of family. Our results definitively establish both the non-monophyly of the Ctenizidae and non-validity of the subfamilies Ummidiinae and Ctenizinae. In order to establish the placement of the remaining three ctenizid genera, Cteniza, Cyrtocarenum, and Stasimopus, thorough analyses within the context of a complete mygalomorph phylogenetic framework are needed. We formally describe the family Halonoproctidae Pocock 1901 and infer that the family's most recent common ancestor was likely distributed in western North America and Asia.


Assuntos
Filogenia , Aranhas/classificação , Animais , Genoma , Funções Verossimilhança , Filogeografia , Análise de Sequência de DNA , Aranhas/genética
20.
Theor Appl Genet ; 131(7): 1541-1552, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29663054

RESUMO

KEY MESSAGE: Despite numerous challenges, field testing of three sources of genetic resistance to sudden death syndrome of soybean provides information to more effectively improve resistance to this disease in cultivars. Sudden death syndrome (SDS) of soybean [Glycine max (L.) Merrill] is a disease that causes yield loss in soybean growing regions across the USA and worldwide. While several quantitative trait loci (QTL) for SDS resistance have been mapped, studies to further evaluate these QTL are limited. The objective of our research was to map SDS resistance QTL and to test the effect of mapped resistance QTL on foliar symptoms when incorporated into elite soybean backgrounds. We mapped a QTL from Ripley to chromosome 10 (CHR10) and a QTL from PI507531 to chromosomes 1 and 18 (CHR1 and 18). Six populations were then developed to test the following QTL: cqSDS-001, with resistance originating from PI567374, CHR10, CHR1, and CHR18. The populations which segregated for resistant and susceptible QTL alleles were field tested in multiple environments and evaluated for SDS foliar symptoms. While foliar disease development was variable across environments and populations, a significant effect of each QTL on disease was detected within at least one environment. This includes the detection of cqSDS-001 in three genetic backgrounds. The QTL allele from the resistant parents was associated with greater resistance than the susceptible alleles for all QTL and backgrounds with the exception of the allele for CHR18, where the opposite occurred. This study highlights the importance and difficulties of evaluating QTL and the need for multi-year SDS field testing. The information presented in this study can aid breeders in making decisions to improve resistance to SDS.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA