Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(46): e2214569119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343225

RESUMO

Immunocyte infiltration and cytotoxicity play critical roles in both inflammation and immunotherapy. However, current cancer immunotherapy screening methods overlook the capacity of the T cells to penetrate the tumor stroma, thereby significantly limiting the development of effective treatments for solid tumors. Here, we present an automated high-throughput microfluidic platform for simultaneous tracking of the dynamics of T cell infiltration and cytotoxicity within the 3D tumor cultures with a tunable stromal makeup. By recourse to a clinical tumor-infiltrating lymphocyte (TIL) score analyzer, which is based on a clinical data-driven deep learning method, our platform can evaluate the efficacy of each treatment based on the scoring of T cell infiltration patterns. By screening a drug library using this technology, we identified an epigenetic drug (lysine-specific histone demethylase 1 inhibitor, LSD1i) that effectively promoted T cell tumor infiltration and enhanced treatment efficacy in combination with an immune checkpoint inhibitor (anti-PD1) in vivo. We demonstrated an automated system and strategy for screening immunocyte-solid tumor interactions, enabling the discovery of immuno- and combination therapies.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Microfluídica/métodos , Detecção Precoce de Câncer , Imunoterapia/métodos , Linfócitos do Interstício Tumoral , Fatores Imunológicos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
Toxicol Appl Pharmacol ; 455: 116263, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195136

RESUMO

Because exposure to bisphenol A (BPA) has been linked to health problems in humans and wildlife, BPA analogues have been synthesized to be considered as replacement molecules. We here have examined estrogenic activity of BPA and five of its analogues, BPAF, BPE, BPC, BPC-Cl, and BPS by a combination of zebrafish-based in vivo and in vitro assays. We used transgenic estrogen reporter (5xERE:GFP) fish to study agonistic effects of bisphenols. Exposures to BPA, BPAF, BPE, and BPC, induced GFP expression in estrogen reporter fish at low exposure concentrations in the heart valves and at higher concentrations in the liver, whereas BPC-Cl activated GFP expression mainly in the liver, and BPS faintly in the heart only. The in vivo response was compared to in vitro estrogenicity of bisphenol exposure using reporter cells that express the zebrafish estrogen receptors driving expression of an estrogen response element (ERE)-luciferase reporter. In these cells, BPA, BPAF, BPC, BPE and BPS preferentially activated Esr1, whereas BPC-Cl preferentially activated Esr2a. By quantitative PCR we found that exposure to BPAF induced expression of the classical estrogen target genes vtg1, esr1, and cyp19a1b in a concentration response manner, but the most responsive target gene was f13a1a. Exposure to BPC-Cl resulted in a different expression pattern of vtg1 and f13a1a with an activation at low concentrations, followed by a declining expression at higher concentrations. Because expression of f13a1a was strongly activated by all compounds tested, we suggest including this mRNA as a biomarker for estrogenicity in larval fish. We further showed that exposure to BPAF and BPC-Cl increased E2 levels in zebrafish larvae, indicating that bisphenol exposures result in a feed-forward response that can further augment the estrogenic activity of these compounds.


Assuntos
Receptores de Estrogênio , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Compostos Benzidrílicos/toxicidade , Estrona , Estrogênios/toxicidade , Estrogênios/metabolismo , Larva/metabolismo , Luciferases , RNA Mensageiro
3.
Epilepsia ; 62(7): 1689-1700, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33997963

RESUMO

OBJECTIVE: Fetal exposure to the anticonvulsant drug valproic acid (VPA), used to treat certain types of epilepsy, increases the risk for birth defects, including neural tube defects, as well as learning difficulties and behavioral problems. Here, we investigated neurotoxic effects of VPA exposure using zebrafish as a model organism. The capacity of folic acid (FA) supplementation to rescue the VPA-induced neuronal and behavioral perturbations was also examined. METHODS: Zebrafish embryos of different transgenic lines with neuronal green fluorescent protein expression were exposed to increasing concentrations of VPA with or without FA supplementation. Fluorescence microscopy was used to visualize alterations in brain structures and neural progenitor cells, as well as motor neurons and neurite sprouting. A twitching behavioral assay was used to examine the functional consequences of VPA and FA treatment. RESULTS: In zebrafish embryos, VPA exposure caused a decrease in the midbrain size, an increase in the midline gap of the hindbrain, and perturbed neurite sprouting of secondary motor neurons, in a concentration-dependent manner. VPA exposure also decreased the fluorescence intensity of neuronal progenitor cells in early developmental stages, indicating fewer cells. Furthermore, VPA exposure significantly altered embryonic twitching activity, causing hyperactivity in dark and hypoactivity in light. Supplementation of FA rescued the VPA-induced smaller midbrain size and hindbrain midline gap defects. FA treatment also increased the number of neuronal progenitor cells in VPA-treated embryos and salvaged neurite sprouting of the secondary motor neurons. FA rescued the VPA-induced alterations in twitching activity in light but not in dark. SIGNIFICANCE: We conclude that VPA exposure induces specific neurotoxic perturbations in developing zebrafish embryos, and that FA reversed most of the identified defects. The results demonstrate that zebrafish is a promising model to study VPA-induced teratogenesis and to screen for countermeasures.


Assuntos
Anticonvulsivantes/toxicidade , Comportamento Animal/efeitos dos fármacos , Ácido Fólico/uso terapêutico , Síndromes Neurotóxicas/prevenção & controle , Síndromes Neurotóxicas/psicologia , Ácido Valproico/toxicidade , Vitaminas/uso terapêutico , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Suplementos Nutricionais , Desenvolvimento Embrionário/efeitos dos fármacos , Larva , Iluminação , Mesencéfalo/anatomia & histologia , Mesencéfalo/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Defeitos do Tubo Neural/induzido quimicamente , Neuritos/efeitos dos fármacos , Rombencéfalo/anatomia & histologia , Rombencéfalo/efeitos dos fármacos , Ácido Valproico/antagonistas & inibidores
4.
Anal Chem ; 91(11): 7097-7103, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31083981

RESUMO

The precise transportation of small-volume liquids in microfluidic and nanofluidic systems remains a challenge for many applications, such as clinical fluidical analysis. Here, we present a reliable digital pump that utilizes acoustic streaming induced by localized fluid-substrate interactions. By locally generating streaming via a C-shaped interdigital transducer (IDT) within a triangle-edged microchannel, our acoustofluidic pump can generate a stable unidirectional flow (∼nanoliter per second flow rate) with a precise digital regulation (∼second response time), and it is capable of handling aqueous solutions (e.g., PBS buffer) as well as high viscosity liquids (e.g., human blood) with a nanoliter-scale volume. Along with our acoustofluidic pump's low cost, programmability, and capacity to control small-volumes at high precision, it could be widely used for point-of-care diagnostics, precise drug delivery, and fundamental biomedical research.

5.
Toxicol Appl Pharmacol ; 380: 114709, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31415773

RESUMO

The high volume production compound bisphenol A (BPA) is of environmental concern largely because of its estrogenic activity. Consequently, BPA analogues have been synthesized to be considered as replacement molecules for BPA. These analogues need to be thoroughly evaluated for their estrogenic activity. Here, we combined mechanism zebrafish-based assays to examine estrogenic and anti-estrogenic activities of BPA and two of its analogues, bisphenol AF (BPAF) and bisphenol C (BPC) in vitro and in vivo. In vitro reporter cell lines were used to investigate agonistic and antagonistic effects of the three bisphenols on the three zebrafish estrogen receptors. The transgenic Tg(5 × ERE:GFP) and Cyp19a1b-GFP zebrafish lines were then used to analyze estrogenic and anti-estrogenic responses of the three bisphenols in vivo. BPA, BPAF and BPC were agonists with different potencies for the three zebrafish estrogen receptors in vitro. The potent zfERα-mediated activity of BPA and BPAF in vitro resulted in vivo by activation of GFP expression in zebrafish larvae in the heart (zfERα-dependent) at lower concentrations, and in the liver (zfERß-dependent) at higher concentrations. BPC induced zfERß-mediated luciferase expression in vitro, and the zfERß agonism led to activation of GFP expression in the liver and the brain in vivo. In addition, BPC acted as a full antagonist on zfERα, and completely inhibited estrogen-induced GFP expression in the heart of the zebrafish larvae. To summarize, applying a combination of zebrafish-based in vitro and in vivo methods to evaluate bisphenol analogues for estrogenic activity will facilitate the prioritization of these chemicals for further analysis in higher vertebrates as well as the risk assessment in humans.


Assuntos
Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Embrião não Mamífero , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores de Estrogênio/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Nanotechnology ; 29(50): 504006, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30264735

RESUMO

Multicellular spheroids represent a promising approach to mimic 3D tissues in vivo for emerging applications in regenerative medicine, therapeutic screening, and drug discovery. Conventional spheroid fabrication methods, such as the hanging drop method, suffer from low-throughput, long time, complicated procedure, and high heterogeneity in spheroid size. In this work, we report a simple yet reliable acoustic method to rapidly assemble cell spheroids in capillaries in a replicable and scalable manner. Briefly, by introducing a coupled standing surface acoustic wave, we are able to generate a linear pressure node array with 300 trapping nodes simultaneously. This enables us to continuously fabricate spheroids in a high-throughput manner with minimal variability in spheroid size. In a proof of concept application, we fabricated cell spheroids of mouse embryonic carcinoma (P19) cells, which grew well and retained differentiation potential in vitro. Based on the advantages of the non-invasive, contactless and label-free acoustic cell manipulation, our method employs the coupling strategy to assemble cells in capillaries, and further advances 3D spheroid assembly technology in an easy, cost-efficient, consistent, and high-throughput manner. This method could further be adapted into a novel 3D biofabrication approach to replicate compilated tissues and organs for a wide set of biomedical applications.


Assuntos
Técnicas de Cultura de Células/instrumentação , Som , Esferoides Celulares/citologia , Acústica/instrumentação , Animais , Sobrevivência Celular , Desenho de Equipamento , Camundongos , Micromanipulação/instrumentação , Células Tumorais Cultivadas
7.
Biochim Biophys Acta ; 1849(2): 142-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24954179

RESUMO

Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for the development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Assuntos
Desenvolvimento Embrionário/fisiologia , Receptores de Estrogênio/fisiologia , Animais , Aves/embriologia , Aves/genética , Criança , Desenvolvimento Embrionário/genética , Feminino , Peixes/embriologia , Peixes/genética , Hormônios/biossíntese , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
8.
Toxicol Appl Pharmacol ; 280(1): 60-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25106122

RESUMO

Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERß), whereas the zebrafish genome encodes three ERs, zfERα and two zfERßs (zfERß1 and zfERß2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERß selective agonists displayed greater potency for zfERα as compared to zfERßs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.


Assuntos
Exposição Ambiental , Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Estrogênios/química , Estrogênios/farmacologia , Feminino , Genes Reporter/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Peixe-Zebra
9.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38854095

RESUMO

BACKGROUND: The insecticide tefluthrin is widely used in agriculture, resulting in widespread pollution. Tefluthrin is a type I pyrethroid characterized by its high persistence in the environment. Understanding the mechanisms of toxicity of tefluthrin will improve its risk assessment. OBJECTIVES: We aimed to decipher the molecular modes of action of tefluthrin. METHODS: Phenotypic developmental toxicity was assessed by exposing zebrafish embryos and larvae to increasing concentrations of tefluthrin. Tg(mnx:mGFP) line was used to assess neurotoxicity. Multi-omics approaches including transcriptomics and lipidomics were applied to analyze RNA and lipid contents, respectively. Finally, an in-silico ligand-protein docking computational method was used to study a possible interaction between tefluthrin and a protein target. RESULTS: Tefluthrin exposure caused severe morphological malformations in zebrafish larvae, including motor neuron abnormalities. The differentially expressed genes were associated with neurotoxicity and metabolic disruption. Lipidomics analysis revealed a disruption in fatty acid, phospholipid, and lysophospholipid recycling. Protein docking modeling suggested that the LPCAT3 enzyme, which recycles lysophospholipids in the Land's cycle, directly interacts with tefluthrin. CONCLUSIONS: Tefluthrin exposure causes morphological and neuronal malformations in zebrafish larvae at nanomolar concentrations. Multi-omics results revealed a potential molecular initiating event i.e., inhibition of LPCAT3, and key events i.e., an altered lysophospholipid to phospholipid ratio, leading to the adverse outcomes of neurotoxicity and metabolic disruption.

10.
Sci Total Environ ; : 174478, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964381

RESUMO

Perfluorooctane sulfonate (PFOS), a class of synthetic chemicals detected in various environmental compartments, has been associated with dysfunctions of the human central nervous system (CNS). However, the underlying neurotoxicology of PFOS exposure is largely understudied due to the lack of relevant human models. Here, we report bioengineered human midbrain organoid microphysiological systems (hMO-MPSs) to recapitulate the response of a fetal human brain to multiple concurrent PFOS exposure conditions. Each hMO-MPS consists of an hMO on a fully 3D printed holder device with a perfusable organoid adhesion layer for enhancing air-liquid interface culturing. Leveraging the unique, simply-fabricated holder devices, hMO-MPSs are scalable, easy to use, and compatible with conventional well-plates, and allow easy transfer onto a multiple-electrode array (MEA) system for plug-and-play measurement of neural activity. Interestingly, the neural activity of hMO-MPSs initially increased and subsequently decreased by exposure to a concentration range of 0, 30, 100, to 300 µM of PFOS. Furthermore, PFOS exposure impaired neural development and promoted neuroinflammation in the engineered hMO-MPSs. Along with PFOS, our platform is broadly applicable for studies toxicology of various other environmental pollutants.

11.
Toxicol Sci ; 193(2): 119-130, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36951524

RESUMO

Triazoles are a major group of azole fungicides commonly used in agriculture, and veterinary and human medicine. Maternal exposure to certain triazole antifungal medication causes congenital malformations, including skeletal malformations. We hypothesized that triazoles used as pesticides in agriculture also pose a risk of causing skeletal malformations in developing embryos. In this study, teratogenic effects of three commonly used triazoles, cyproconazole, paclobutrazol, and triadimenol, were investigated in zebrafish, Danio rerio. Exposure to the triazole fungicides caused bone and cartilage malformations in developing zebrafish larvae. Data from whole-embryo transcriptomics with cyproconazole suggested that exposure to this compound induces adipogenesis while repressing skeletal development. Confirming this finding, the expression of selected bone and cartilage marker genes were significantly downregulated with triazoles exposure as determined by quantitative PCR. The expression of selected adipogenic genes was upregulated by the triazoles. Furthermore, exposure to each of the three triazoles induced adipogenesis and lipid droplet formation in vitro in 3T3-L1 pre-adipocyte cells. In vivo in zebrafish larvae, cyproconazole exposure caused lipid accumulation. These results suggest that exposure to triazoles promotes adipogenesis at the expense of skeletal development, and thus they expand the chemical group of bona fide bone to fat switchers.


Assuntos
Fungicidas Industriais , Peixe-Zebra , Animais , Feminino , Humanos , Peixe-Zebra/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Adipogenia , Antifúngicos , Triazóis/toxicidade , Triazóis/metabolismo
12.
Breast Cancer Res ; 14(6): R148, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23158001

RESUMO

INTRODUCTION: Epithelial to mesenchymal transition (EMT) is associated with the basal-like breast cancer phenotypes. 60% of basal-like cancers have been shown to express wild-type estrogen receptor beta (ERbeta1). However, it is still unclear whether the ERbeta expression is related to EMT, invasion and metastasis in breast cancer. In the present study, we examined whether ERbeta1 through regulating EMT can influence invasion and metastasis in basal-like cancers. METHODS: Basal-like breast cancer cells (MDA-MB-231 and Hs578T) in which ERbeta1 was either overexpressed or downregulated were analyzed for their ability to migrate and invade (wound-healing assay, matrigel-coated Transwell assay) as well as for the expression of EMT markers and components of the EGFR pathway (immunoblotting, RT-PCR). Coimmunoprecipitation and ubiquitylation assays were employed to examine whether ERbeta1 alters EGFR protein degradation and the interaction between EGFR and the ubiquitin ligase c-Cbl. The metastatic potential of the ERbeta1-expressing MDA-MB-231 cells was evaluated in vivo in a zebrafish xenotransplantation model and the correlation between ERbeta1 and E-cadherin expression was examined in 208 clinical breast cancer specimens by immunohistochemistry. RESULTS: Here we show that ERbeta1 inhibits EMT and invasion in basal-like breast cancer cells when they grow either in vitro or in vivo in zebrafish. The inhibition of EMT correlates with an ERbeta1-mediated upregulation of miR-200a/b/429 and the subsequent repression of ZEB1 and SIP1, which results in increased expression of E-cadherin. The positive correlation of ERbeta1 and E-cadherin expression was additionally observed in breast tumor samples. Downregulation of the basal marker EGFR through stabilization of the ubiquitin ligase c-Cbl complexes and subsequent ubiquitylation and degradation of the activated receptor is involved in the ERbeta1-mediated repression of EMT and induction of EGFR signaling abolished the ability of ERbeta1 to sustain the epithelial phenotype. CONCLUSIONS: Taken together, the results of our study strengthen the association of ERbeta1 with the regulation of EMT and propose the receptor as a potential crucial marker in predicting metastasis in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Receptor beta de Estrogênio/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caderinas/biossíntese , Linhagem Celular Tumoral , Receptor beta de Estrogênio/biossíntese , Receptor beta de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Células MCF-7 , MicroRNAs/biossíntese , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Transplante de Neoplasias , Neoplasia de Células Basais , Proteínas do Tecido Nervoso/biossíntese , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/biossíntese , Proteínas Repressoras/biossíntese , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Transplante Heterólogo , Ubiquitinação , Peixe-Zebra , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
13.
Methods Mol Biol ; 2418: 173-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119666

RESUMO

In vivo models to detect estrogenic compounds are very valuable for screening for endocrine disruptors. Here we describe the use of transgenic estrogen reporter zebrafish as an in vivo model for the identification of estrogenic properties of compounds. Live imaging of these transgenic fish provides knowledge of estrogen receptor specificity of different ligands as well as dynamics of estrogen signaling. Coupled to image analysis, the model can provide quantitative concentration-response information on estrogenic activity of chemical compounds.


Assuntos
Disruptores Endócrinos , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Estrogênios , Genes Reporter , Peixe-Zebra/genética
14.
Birth Defects Res C Embryo Today ; 93(2): 67-114, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21671351

RESUMO

Given the ever-increasing toxic exposure ubiquitously present in our environment as well as emerging evidence that these exposures are hazardous to human health, the current rodent-based regulations are proving inadequate. In the process of overhauling risk assessment methodology, a nonrodent test organism, the zebrafish, is emerging as tractable for medium- and high-throughput assessments, which may help to accelerate the restructuring of standards. Zebrafish have high developmental similarity to mammals in most aspects of embryo development, including early embryonic processes, and on cardiovascular, somite, muscular, skeletal, and neuronal systems. Here, we briefly describe the development of these systems and then chronicle the toxic impacts assessed following chemical exposure. We also compare the available data in zebrafish toxicity assays with two databases containing mammalian toxicity data. Finally, we identify gaps in our collective knowledge that are ripe for future studies.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Exposição Ambiental , Substâncias Perigosas/toxicidade , Desenvolvimento Musculoesquelético/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Peixe-Zebra/embriologia , Animais , Sistema Cardiovascular/embriologia , Desenvolvimento Embrionário/fisiologia , Substâncias Perigosas/metabolismo , Modelos Animais , Desenvolvimento Musculoesquelético/fisiologia , Neurogênese/fisiologia , Medição de Risco/métodos , Transdução de Sinais/efeitos dos fármacos
15.
Aquat Toxicol ; 240: 105995, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34673467

RESUMO

As electronic cigarettes (e-cigarettes) become increasingly popular smoking devices, there is an increased risk for unintended exposure to e-cigarette liquids through improper disposal resulting in leaching into the environment, third hand vapor exposure through air, or embryonic exposure through maternal vaping. Thus, the safety of e-cigarettes for wildlife and developing embryos need to be thoroughly investigated. We examined perturbations in zebrafish embryonic development after exposures to two cinnamon flavored vaping liquids (with 12 mg/ml nicotine and without nicotine) for e-cigarettes from two different vendors, as well as the flavoring chemical cinnamaldehyde. We focused on the effects of the vaping liquids on hatching success and bone, cartilage and blood vessel development in 3-4 days old transgenic zebrafish larvae. We found that exposures to both of the vaping liquids perturbed the development of the cleithrum and craniofacial cartilage. Exposure to the liquids further caused non-overlapping and partially or completely missing intersegmental vessels. Hatching success was also reduced. Exposure to pure cinnamaldehyde replicated the effects of the vaping liquids with a 50% effect concentration (EC50) of 34-41 µM. Quantification of the amount of cinnamaldehyde in the vaping liquids by mass spectrometry revealed EC50s around 10-40 times lower than for pure cinnamaldehyde, suggesting that additional compounds or metabolites present in the vaping liquids mediate toxicity. Presence of nicotine in one of the vaping liquids decreased its EC50s about two fold compared to the liquid without nicotine. Exposure to the humectants propylene glycol and vegetable glycerin did not affect the vascular, cartilage or bone development in zebrafish embryos. In conclusion, our study shows that exposure to cinnamaldehyde containing vaping liquids causes severe tissue-specific defects in developing embryos.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Poluentes Químicos da Água , Acroleína/análogos & derivados , Animais , Cartilagem , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
16.
Essays Biochem ; 65(6): 847-856, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34825698

RESUMO

Nuclear receptors are classically defined as ligand-activated transcription factors that regulate key functions in reproduction, development, and physiology. Humans have 48 nuclear receptors, which when dysregulated are often linked to diseases. Because most nuclear receptors can be selectively activated or inactivated by small molecules, they are prominent therapeutic targets. The basic understanding of this family of transcription factors was accelerated in the 1980s upon the cloning of the first hormone receptors. During the next 20 years, a deep understanding of hormone signaling was achieved that has translated to numerous clinical applications, such as the development of standard-of-care endocrine therapies for hormonally driven breast and prostate cancers. A 2004 issue of this journal reviewed progress on elucidating the structures of nuclear receptors and their mechanisms of action. In the current issue, we focus on the broad application of new knowledge in this field for therapy across diverse disease states including cancer, cardiovascular disease, various inflammatory diseases, the aging brain, and COVID-19.


Assuntos
Receptores Citoplasmáticos e Nucleares/farmacologia , Receptores Citoplasmáticos e Nucleares/uso terapêutico , Animais , Doenças Cardiovasculares/tratamento farmacológico , Feminino , Humanos , Inflamação/tratamento farmacológico , Masculino , Neoplasias/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/metabolismo , SARS-CoV-2 , Transdução de Sinais , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
17.
Environ Pollut ; 287: 117637, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34182391

RESUMO

In toxicology, standard sigmoidal concentration-response curves are used to predict effects concentrations and set chemical regulations. However, current literature also establishes the existence of complex, bimodal concentration-response curves, as is the case for arsenic toxicity. This bimodal response has been observed at the molecular level, but not characterized at the whole organism level. This study investigated the effect of arsenic (sodium arsenite) on post-gastrulated zebrafish embryos and elucidated effects of bimodal concentration-responses on different phenotypic perturbations. Six hour post fertilized (hpf) zebrafish embryos were exposed to arsenic to 96 hpf. Hatching success, mortality, and morphometric endpoints were evaluated both in embryos with chorions and dechorionated embryos. Zebrafish embryos exhibited a bimodal response to arsenic exposure. Concentration-response curves for exposed embryos with intact chorions had an initial peak in mortality (88%) at 1.33 mM arsenic, followed by a decrease in toxicity (~20% mortality) at 1.75 mM, and subsequently peaked to 100% mortality at higher concentrations. To account for the bimodal response, two distinct concentration-response curves were generated with estimated LC10 values (and 95% CI) of 0.462 (0.415, 0.508) mM and 1.69 (1.58, 1.78) mM for the 'low concentration' and 'high concentration' peaks, respectively. Other phenotypic analyses, including embryo length, yolk and pericardial edema all produced similar concentration-response patterns. Tests with dechorionated embryos also resulted in a bimodal toxicity response but with lower LC10 values of 0.170 (0.120, 0.220) mM and 0.800 (0.60, 0842) mM, respectively. Similarities in bimodal concentration-responses between with-chorion and dechorionated embryos indicate that the observed effect was not caused by the chorion limiting arsenic availability, thus lending support to other studies such as those that hypothesized a conserved bimodal mechanism of arsenic interference with nuclear receptor activation.


Assuntos
Arsênio , Peixe-Zebra , Animais , Arsênio/toxicidade , Córion , Embrião não Mamífero
18.
Toxicology ; 461: 152900, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34411659

RESUMO

The 3T3-L1 murine pre-adipocyte line is an established cell culture model for screening Metabolism Disrupting Chemicals (MDCs). Despite a need to accurately identify MDCs for further evaluation, relatively little research has been performed to comprehensively evaluate reproducibility across laboratories, assess factors that might contribute to varying degrees of differentiation between laboratories (media additives, plastics, cell source, etc.), or to standardize protocols. As such, the goals of this study were to assess interlaboratory variability of efficacy and potency outcomes for triglyceride accumulation and pre-adipocyte proliferation using the mouse 3T3-L1 pre-adipocyte cell assay to test chemicals. Ten laboratories from five different countries participated. Each laboratory evaluated one reference chemical (rosiglitazone) and three blinded test chemicals (tributyltin chloride, pyraclostrobin, and bisphenol A) using: 1) their Laboratory-specific 3T3-L1 Cells (LC) and their Laboratory-specific differentiation Protocol (LP), 2) Shared 3T3-L1 Cells (SC) with LP, 3) LC with a Shared differentiation Protocol (SP), and 4) SC with SP. Blinded test chemical responses were analyzed by the coordinating laboratory. The magnitude and range of bioactivities reported varied considerably across laboratories and test conditions, though the presence or absence of activity for each tested chemical was more consistent. Triglyceride accumulation activity determinations for rosiglitazone ranged from 90 to 100% across test conditions, but 30-70 % for pre-adipocyte proliferation; this was 40-80 % for triglyceride accumulation induced by pyraclostrobin, 80-100 % for tributyltin, and 80-100 % for bisphenol A. Consistency was much lower for pre-adipocyte proliferation, with 30-70 % active determinations for pyraclostrobin, 30-50 % for tributyltin, and 20-40 % for bisphenol A. Greater consistency was observed for the SC/SP assessment. As such, working to develop a standardized adipogenic differentiation protocol represents the best strategy for improving consistency of adipogenic responses using the 3T3-L1 model to reproducibly identify MDCs and increase confidence in reported outcomes.


Assuntos
Adipogenia/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Estrobilurinas/toxicidade , Compostos de Trialquitina/toxicidade , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Reprodutibilidade dos Testes , Rosiglitazona/farmacologia , Triglicerídeos/metabolismo
19.
Dev Cell ; 9(5): 617-28, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16256737

RESUMO

In addition to controlling a switch to glycolytic metabolism and induction of erythropoiesis and angiogenesis, hypoxia promotes the undifferentiated cell state in various stem and precursor cell populations. Here, we show that the latter process requires Notch signaling. Hypoxia blocks neuronal and myogenic differentiation in a Notch-dependent manner. Hypoxia activates Notch-responsive promoters and increases expression of Notch direct downstream genes. The Notch intracellular domain interacts with HIF-1alpha, a global regulator of oxygen homeostasis, and HIF-1alpha is recruited to Notch-responsive promoters upon Notch activation under hypoxic conditions. Taken together, these data provide molecular insights into how reduced oxygen levels control the cellular differentiation status and demonstrate a role for Notch in this process.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carbamatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Proteínas de Homeodomínio/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/efeitos dos fármacos , Receptores Notch/genética , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Transcrição HES-1
20.
J Vis Exp ; (155)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32009650

RESUMO

Dynamics of development can be followed by confocal time-lapse microscopy of live transgenic zebrafish embryos expressing fluorescence in specific tissues or cells. A difficulty with imaging whole embryo development is that zebrafish embryos grow substantially in length. When mounted as regularly done in 0.3-1% low melt agarose, the agarose imposes growth restriction, leading to distortions in the soft embryo body. Yet, to perform confocal time-lapse microscopy, the embryo must be immobilized. This article describes a layered mounting method for zebrafish embryos that restrict the motility of the embryos while allowing for the unrestricted growth. The mounting is performed in layers of agarose at different concentrations. To demonstrate the usability of this method, whole embryo vascular, neuronal and muscle development was imaged in transgenic fish for 55 consecutive hours. This mounting method can be used for easy, low-cost imaging of whole zebrafish embryos using inverted microscopes without requirements of molds or special equipment.


Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Desenvolvimento Embrionário/fisiologia , Microscopia Confocal/métodos , Imagem com Lapso de Tempo/métodos , Animais , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA