Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7773): 276-280, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31485077

RESUMO

The emergence of antibiotic-resistant bacteria through mutations or the acquisition of genetic material such as resistance plasmids represents a major public health issue1,2. Persisters are subpopulations of bacteria that survive antibiotics by reversibly adapting their physiology3-10, and can promote the emergence of antibiotic-resistant mutants11. We investigated whether persisters can also promote the spread of resistance plasmids. In contrast to mutations, the transfer of resistance plasmids requires the co-occurrence of both a donor and a recipient bacterial strain. For our experiments, we chose the facultative intracellular entero-pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) and Escherichia coli, a common member of the microbiota12. S. Typhimurium forms persisters that survive antibiotic therapy in several host tissues. Here we show that tissue-associated S. Typhimurium persisters represent long-lived reservoirs of plasmid donors or recipients. The formation of reservoirs of S. Typhimurium persisters requires Salmonella pathogenicity island (SPI)-1 and/or SPI-2 in gut-associated tissues, or SPI-2 at systemic sites. The re-seeding of these persister bacteria into the gut lumen enables the co-occurrence of donors with gut-resident recipients, and thereby favours plasmid transfer between various strains of Enterobacteriaceae. We observe up to 99% transconjugants within two to three days of re-seeding. Mathematical modelling shows that rare re-seeding events may suffice for a high frequency of conjugation. Vaccination reduces the formation of reservoirs of persisters after oral infection with S. Typhimurium, as well as subsequent plasmid transfer. We conclude that-even without selection for plasmid-encoded resistance genes-small reservoirs of pathogen persisters can foster the spread of promiscuous resistance plasmids in the gut.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Mucosa Intestinal/microbiologia , Plasmídeos/genética , Salmonella typhimurium/genética , Animais , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Modelos Teóricos , Salmonella typhimurium/efeitos dos fármacos , Vacinação
2.
Proc Biol Sci ; 291(2015): 20232449, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38262608

RESUMO

Bacteria are infected by mobile genetic elements like plasmids and virulent phages, and those infections significantly impact bacterial ecology and evolution. Recent discoveries reveal that some plasmids carry anti-phage immune systems like CRISPR-Cas, suggesting that plasmids may participate in the coevolutionary arms race between virulent phages and bacteria. Intuitively, this seems reasonable as virulent phages kill the plasmid's obligate host. However, the efficiency of CRISPR-Cas systems carried by plasmids can be expected to be lower than those carried by the chromosome due to continuous segregation loss, creating susceptible cells for phage amplification. To evaluate the anti-phage protection efficiency of CRISPR-Cas on plasmids, we develop a stochastic model describing the dynamics of a virulent phage infection against which a conjugative plasmid defends using CRISPR-Cas. We show that CRISPR-Cas on plasmids provides robust protection, except in limited parameter sets. In these cases, high segregation loss favours phage outbreaks by generating a population of defenceless cells on which the phage can evolve and escape CRISPR-Cas immunity. We show that the phage's ability to exploit segregation loss depends strongly on the evolvability of both CRISPR-Cas and the phage itself.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Plasmídeos , Surtos de Doenças , Ecologia
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33766914

RESUMO

The rapid rise of antibiotic resistance, combined with the increasing cost and difficulties to develop new antibiotics, calls for treatment strategies that enable more sustainable antibiotic use. The development of such strategies, however, is impeded by the lack of suitable experimental approaches that allow testing their effects under realistic epidemiological conditions. Here, we present an approach to compare the effect of alternative multidrug treatment strategies in vitro using a robotic liquid-handling platform. We use this framework to study resistance evolution and spread implementing epidemiological population dynamics for treatment, transmission, and patient admission and discharge, as may be observed in hospitals. We perform massively parallel experimental evolution over up to 40 d and complement this with a computational model to infer the underlying population-dynamical parameters. We find that in our study, combination therapy outperforms monotherapies, as well as cycling and mixing, in minimizing resistance evolution and maximizing uninfecteds, as long as there is no influx of double resistance into the focal treated community.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana/genética , Quimioterapia Combinada , Epidemias , Evolução Molecular , Adaptação Fisiológica , Antibacterianos/farmacologia , Infecções Bacterianas/microbiologia , Simulação por Computador , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Mutação , Ácido Nalidíxico/farmacologia , Ácido Nalidíxico/uso terapêutico , Admissão do Paciente , Alta do Paciente , Estreptomicina/farmacologia , Estreptomicina/uso terapêutico
4.
BMC Bioinformatics ; 24(1): 310, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568078

RESUMO

BACKGROUND: Accurate estimation of the effective reproductive number ([Formula: see text]) of epidemic outbreaks is of central relevance to public health policy and decision making. We present estimateR, an R package for the estimation of the reproductive number through time from delayed observations of infection events. Such delayed observations include confirmed cases, hospitalizations or deaths. The package implements the methodology of Huisman et al. but modularizes the [Formula: see text] estimation procedure to allow easy implementation of new alternatives to the currently available methods. Users can tailor their analyses according to their particular use case by choosing among implemented options. RESULTS: The estimateR R package allows users to estimate the effective reproductive number of an epidemic outbreak based on observed cases, hospitalization, death or any other type of event documenting past infections, in a fast and timely fashion. We validated the implementation with a simulation study: estimateR yielded estimates comparable to alternative publicly available methods while being around two orders of magnitude faster. We then applied estimateR to empirical case-confirmation incidence data for COVID-19 in nine countries and for dengue fever in Brazil; in parallel, estimateR is already being applied (i) to SARS-CoV-2 measurements in wastewater data and (ii) to study influenza transmission based on wastewater and clinical data in other studies. In summary, this R package provides a fast and flexible implementation to estimate the effective reproductive number for various diseases and datasets. CONCLUSIONS: The estimateR R package is a modular and extendable tool designed for outbreak surveillance and retrospective outbreak investigation. It extends the method developed for COVID-19 by Huisman et al. and makes it available for a variety of pathogens, outbreak scenarios, and observation types. Estimates obtained with estimateR can be interpreted directly or used to inform more complex epidemic models (e.g. for forecasting) on the value of [Formula: see text].


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Número Básico de Reprodução , Estudos Retrospectivos , Águas Residuárias
5.
PLoS Comput Biol ; 18(7): e1010329, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35881633

RESUMO

Bacteria have adaptive immunity against viruses (phages) in the form of CRISPR-Cas immune systems. Currently, 6 types of CRISPR-Cas systems are known and the molecular study of three of these has revealed important molecular differences. It is unknown if and how these molecular differences change the outcome of phage infection and the evolutionary pressure the CRISPR-Cas systems faces. To determine the importance of these molecular differences, we model a phage outbreak entering a population defending exclusively with a type I/II or a type III CRISPR-Cas system. We show that for type III CRISPR-Cas systems, rapid phage extinction is driven by the probability to acquire at least one resistance spacer. However, for type I/II CRISPR-Cas systems, rapid phage extinction is characterized by an a threshold-like behaviour: any acquisition probability below this threshold leads to phage survival whereas any acquisition probability above it, results in phage extinction. We also show that in the absence of autoimmunity, high acquisition rates evolve. However, when CRISPR-Cas systems are prone to autoimmunity, intermediate levels of acquisition are optimal during a phage outbreak. As we predict an optimal probability of spacer acquisition 2 factors of magnitude above the one that has been measured, we discuss the origin of such a discrepancy. Finally, we show that in a biologically relevant parameter range, a type III CRISPR-Cas system can outcompete a type I/II CRISPR-Cas system with a slightly higher probability of acquisition.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Bactérias , Bacteriófagos/genética , Evolução Biológica , Sistemas CRISPR-Cas/genética
6.
J Antimicrob Chemother ; 77(3): 646-655, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34894245

RESUMO

BACKGROUND: Next-generation sequencing has considerably increased the number of genomes available in the public domain. However, efforts to use these genomes for surveillance of antimicrobial resistance have thus far been limited and geographically heterogeneous. We inferred global resistance trends in Escherichia coli in food animals using genomes from public databases. METHODS: We retrieved 7632 E. coli genomes from public databases (NCBI, PATRIC and EnteroBase) and screened for antimicrobial resistance genes (ARGs) using ResFinder. Selection bias towards resistance, virulence or specific strains was accounted for by screening BioProject descriptions. Temporal trends for MDR, resistance to antimicrobial classes and ARG prevalence were inferred using generalized linear models for all genomes, including those not subjected to selection bias. RESULTS: MDR increased by 1.6 times between 1980 and 2018, as genomes carried, on average, ARGs conferring resistance to 2.65 antimicrobials in swine, 2.22 in poultry and 1.58 in bovines. Highest resistance levels were observed for tetracyclines (42.2%-69.1%), penicillins (19.4%-47.5%) and streptomycin (28.6%-56.6%). Resistance trends were consistent after accounting for selection bias, although lower mean absolute resistance estimates were associated with genomes not subjected to selection bias (difference of 3.16%±3.58% across years, hosts and antimicrobial classes). We observed an increase in extended-spectrum cephalosporin ARG blaCMY-2 and a progressive substitution of tetB by tetA. Estimates of resistance prevalence inferred from genomes in the public domain were in good agreement with reports from systematic phenotypic surveillance. CONCLUSIONS: Our analysis illustrates the potential of using the growing volume of genomes in public databases to track AMR trends globally.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Aves Domésticas , Suínos
7.
Plasmid ; 121: 102627, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271855

RESUMO

Plasmids are important vectors for the spread of genes among diverse populations of bacteria. However, there is no standard method to determine the rate at which they spread horizontally via conjugation. Here, we compare commonly used methods on simulated and experimental data, and show that the resulting conjugation rate estimates often depend strongly on the time of measurement, the initial population densities, or the initial ratio of donor to recipient populations. Differences in growth rate, e.g. induced by sub-lethal antibiotic concentrations or temperature, can also significantly bias conjugation rate estimates. We derive a new 'end-point' measure to estimate conjugation rates, which extends the well-known Simonsen method to include the effects of differences in population growth and conjugation rates from donors and transconjugants. We further derive analytical expressions for the parameter range in which these approximations remain valid. We present an easy to use R package and web interface which implement both new and previously existing methods to estimate conjugation rates. The result is a set of tools and guidelines for accurate and comparable measurement of plasmid conjugation rates.


Assuntos
Bactérias , Conjugação Genética , Antibacterianos , Bactérias/genética , Transferência Genética Horizontal , Plasmídeos/genética
8.
PLoS Comput Biol ; 17(2): e1008728, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635863

RESUMO

Large-scale serological testing in the population is essential to determine the true extent of the current SARS-CoV-2 pandemic. Serological tests measure antibody responses against pathogens and use predefined cutoff levels that dichotomize the quantitative test measures into sero-positives and negatives and use this as a proxy for past infection. With the imperfect assays that are currently available to test for past SARS-CoV-2 infection, the fraction of seropositive individuals in serosurveys is a biased estimator of the cumulative incidence and is usually corrected to account for the sensitivity and specificity. Here we use an inference method-referred to as mixture-model approach-for the estimation of the cumulative incidence that does not require to define cutoffs by integrating the quantitative test measures directly into the statistical inference procedure. We confirm that the mixture model outperforms the methods based on cutoffs, leading to less bias and error in estimates of the cumulative incidence. We illustrate how the mixture model can be used to optimize the design of serosurveys with imperfect serological tests. We also provide guidance on the number of control and case sera that are required to quantify the test's ambiguity sufficiently to enable the reliable estimation of the cumulative incidence. Lastly, we show how this approach can be used to estimate the cumulative incidence of classes of infections with an unknown distribution of quantitative test measures. This is a very promising application of the mixture-model approach that could identify the elusive fraction of asymptomatic SARS-CoV-2 infections. An R-package implementing the inference methods used in this paper is provided. Our study advocates using serological tests without cutoffs, especially if they are used to determine parameters characterizing populations rather than individuals. This approach circumvents some of the shortcomings of cutoff-based methods at exactly the low cumulative incidence levels and test accuracies that we are currently facing in SARS-CoV-2 serosurveys.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Modelos Estatísticos , Pandemias , SARS-CoV-2 , Anticorpos Antivirais/sangue , Infecções Assintomáticas/epidemiologia , COVID-19/imunologia , Teste Sorológico para COVID-19/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Intervalos de Confiança , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Incidência , Funções Verossimilhança , Pandemias/estatística & dados numéricos , Curva ROC , Reprodutibilidade dos Testes , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
10.
Proc Natl Acad Sci U S A ; 116(46): 23106-23116, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31666328

RESUMO

To understand how antibiotic use affects the risk of a resistant infection, we present a computational model of the population dynamics of gut microbiota including antibiotic resistance-conferring plasmids. We then describe how this model is parameterized based on published microbiota data. Finally, we investigate how treatment history affects the prevalence of resistance among opportunistic enterobacterial pathogens. We simulate treatment histories and identify which properties of prior antibiotic exposure are most influential in determining the prevalence of resistance. We find that resistance prevalence can be predicted by 3 properties, namely the total days of drug exposure, the duration of the drug-free period after last treatment, and the center of mass of the treatment pattern. Overall this work provides a framework for capturing the role of the microbiome in the selection of antibiotic resistance and highlights the role of treatment history for the prevalence of resistance.


Assuntos
Antibacterianos/administração & dosagem , Farmacorresistência Bacteriana/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Biológicos , Farmacorresistência Bacteriana/genética , Humanos , Plasmídeos
11.
Mol Biol Evol ; 37(1): 58-70, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504754

RESUMO

Bacteria can resist antibiotics by expressing enzymes that remove or deactivate drug molecules. Here, we study the effects of gene expression stochasticity on efflux and enzymatic resistance. We construct an agent-based model that stochastically simulates multiple biochemical processes in the cell and we observe the growth and survival dynamics of the cell population. Resistance-enhancing mutations are introduced by varying parameters that control the enzyme expression or efficacy. We find that stochastic gene expression can cause complex dynamics in terms of survival and extinction for these mutants. Regulatory mutations, which augment the frequency and duration of resistance gene transcription, can provide limited resistance by increasing mean expression. Structural mutations, which modify the enzyme or efflux efficacy, provide most resistance by improving the binding affinity of the resistance protein to the antibiotic; increasing the enzyme's catalytic rate alone may contribute to resistance if drug binding is not rate limiting. Overall, we identify conditions where regulatory mutations are selected over structural mutations, and vice versa. Our findings show that stochastic gene expression is a key factor underlying efflux and enzymatic resistances and should be taken into consideration in future antibiotic research.


Assuntos
Farmacorresistência Bacteriana/genética , Expressão Gênica , Modelos Genéticos , Mutação , Seleção Genética
12.
PLoS Biol ; 16(5): e2005056, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750784

RESUMO

The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm.


Assuntos
Evolução Biológica , Taxa de Mutação , Estresse Fisiológico , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Genéticos , Dinâmica Populacional
13.
PLoS Biol ; 16(2): e2004644, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29470493

RESUMO

Whether mutations in bacteria exhibit a noticeable delay before expressing their corresponding mutant phenotype was discussed intensively in the 1940s to 1950s, but the discussion eventually waned for lack of supportive evidence and perceived incompatibility with observed mutant distributions in fluctuation tests. Phenotypic delay in bacteria is widely assumed to be negligible, despite the lack of direct evidence. Here, we revisited the question using recombineering to introduce antibiotic resistance mutations into E. coli at defined time points and then tracking expression of the corresponding mutant phenotype over time. Contrary to previous assumptions, we found a substantial median phenotypic delay of three to four generations. We provided evidence that the primary source of this delay is multifork replication causing cells to be effectively polyploid, whereby wild-type gene copies transiently mask the phenotype of recessive mutant gene copies in the same cell. Using modeling and simulation methods, we explored the consequences of effective polyploidy for mutation rate estimation by fluctuation tests and sequencing-based methods. For recessive mutations, despite the substantial phenotypic delay, the per-copy or per-genome mutation rate is accurately estimated. However, the per-cell rate cannot be estimated by existing methods. Finally, with a mathematical model, we showed that effective polyploidy increases the frequency of costly recessive mutations in the standing genetic variation (SGV), and thus their potential contribution to evolutionary adaptation, while drastically reducing the chance that de novo recessive mutations can rescue populations facing a harsh environmental change such as antibiotic treatment. Overall, we have identified phenotypic delay and effective polyploidy as previously overlooked but essential components in bacterial evolvability, including antibiotic resistance evolution.


Assuntos
Escherichia coli/genética , Evolução Molecular , Poliploidia , Cromossomos Bacterianos , Replicação do DNA , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Dosagem de Genes , Genes Bacterianos , Genes Recessivos , Variação Genética , Mutagênese , Mutação , Origem de Replicação
14.
PLoS Comput Biol ; 16(12): e1008409, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301457

RESUMO

Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.


Assuntos
Número Básico de Reprodução , COVID-19 , COVID-19/epidemiologia , COVID-19/transmissão , Biologia Computacional , Humanos , Modelos Estatísticos , SARS-CoV-2
15.
PLoS Pathog ; 14(2): e1006895, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462208

RESUMO

Drug resistant HIV is a major threat to the long-term efficacy of antiretroviral treatment. Around 10% of ART-naïve patients in Europe are infected with drug-resistant HIV type 1. Hence it is important to understand the dynamics of transmitted drug resistance evolution. Thanks to routinely performed drug resistance tests, HIV sequence data is increasingly available and can be used to reconstruct the phylogenetic relationship among viral lineages. In this study we employ a phylodynamic approach to quantify the fitness costs of major resistance mutations in the Swiss HIV cohort. The viral phylogeny reflects the transmission tree, which we model using stochastic birth-death-sampling processes with two types: hosts infected by a sensitive or resistant strain. This allows quantification of fitness cost as the ratio between transmission rates of hosts infected by drug resistant strains and transmission rates of hosts infected by drug sensitive strains. The resistance mutations 41L, 67N, 70R, 184V, 210W, 215D, 215S and 219Q (nRTI-related) and 103N, 108I, 138A, 181C, 190A (NNRTI-related) in the reverse trancriptase and the 90M mutation in the protease gene are included in this study. Among the considered resistance mutations, only the 90M mutation in the protease gene was found to have significantly higher fitness than the drug sensitive strains. The following mutations associated with resistance to reverse transcriptase inhibitors were found to be less fit than the sensitive strains: 67N, 70R, 184V, 219Q. The highest posterior density intervals of the transmission ratios for the remaining resistance mutations included in this study all included 1, suggesting that these mutations do not have a significant effect on viral transmissibility within the Swiss HIV cohort. These patterns are consistent with alternative measures of the fitness cost of resistance mutations. Overall, we have developed and validated a novel phylodynamic approach to estimate the transmission fitness cost of drug resistance mutations.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Aptidão Genética , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Taxa de Mutação , Adaptação Biológica/genética , Terapia Antirretroviral de Alta Atividade , Bases de Dados Factuais , Genótipo , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Humanos , Mutação , Filogenia , Inibidores da Transcriptase Reversa/uso terapêutico , Suíça/epidemiologia
16.
J Theor Biol ; 492: 110185, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035826

RESUMO

Cancer immunotherapies rely on how interactions between cancer and immune system cells are constituted. The more essential to the emergence of the dynamical behavior of cancer growth these interactions are, the more effectively they may be used as mechanisms for interventions. Mathematical modeling can help unearth such connections, and help explain how they shape the dynamics of cancer growth. Here, we explored whether there exist simple, consistent properties of cancer-immune system interaction (CISI) models that might be harnessed to devise effective immunotherapy approaches. We did this for a family of three related models of increasing complexity. To this end, we developed a base model of CISI, which captures some essential features of the more complex models built on it. We find that the base model and its derivates can plausibly reproduce biological behavior that is consistent with the notion of an immunological barrier. This behavior is also in accord with situations in which the suppressive effects exerted by cancer cells on immune cells dominate their proliferative effects. Under these circumstances, the model family may display a pattern of bistability, where two distinct, stable states (a cancer-free, and a full-grown cancer state) are possible. Increasing the effectiveness of immune-caused cancer cell killing may remove the basis for bistability, and abruptly tip the dynamics of the system into a cancer-free state. Additionally, in combination with the administration of immune effector cells, modifications in cancer cell killing may be harnessed for immunotherapy without the need for resolving the bistability. We use these ideas to test immunotherapeutic interventions in silico in a stochastic version of the base model. This bistability-reliant approach to cancer interventions might offer advantages over those that comprise gradual declines in cancer cell numbers.


Assuntos
Imunoterapia , Neoplasias , Simulação por Computador , Humanos , Sistema Imunitário , Terapia de Imunossupressão , Neoplasias/terapia
17.
Mol Biol Evol ; 35(1): 27-37, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029206

RESUMO

Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor.


Assuntos
Contagem de Linfócito CD4/métodos , Infecções por HIV/transmissão , Carga Viral/métodos , Adulto , Linfócitos T CD4-Positivos/patologia , Estudos de Coortes , Feminino , Genótipo , HIV-1/genética , Humanos , Masculino , Fenótipo , Filogenia , Virulência
18.
PLoS Comput Biol ; 14(5): e1006119, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29727455

RESUMO

Disease tolerance is a defense strategy against infections that aims at maintaining host health even at high pathogen replication or load. Tolerance mechanisms are currently intensively studied with the long-term goal of exploiting them therapeutically. Because tolerance-based treatment imposes less selective pressure on the pathogen it has been hypothesised to be "evolution-proof". However, the primary public health goal is to reduce the incidence and mortality associated with a disease. From this perspective, tolerance-based treatment bears the risk of increasing the prevalence of the disease, which may lead to increased mortality. We assessed the promise of tolerance-based treatment strategies using mathematical models. Conventional treatment was implemented as an increased recovery rate, while tolerance-based treatment was assumed to reduce the disease-related mortality of infected hosts without affecting recovery. We investigated the endemic phase of two types of infections: acute and chronic. Additionally, we considered the effect of pathogen resistance against conventional treatment. We show that, for low coverage of tolerance-based treatment, chronic infections can cause even more deaths than without treatment. Overall, we found that conventional treatment always outperforms tolerance-based treatment, even when we allow the emergence of pathogen resistance. Our results cast doubt on the potential benefit of tolerance-based over conventional treatment. Any clinical application of tolerance-based treatment of infectious diseases has to consider the associated detrimental epidemiological feedback.


Assuntos
Doenças Transmissíveis , Biologia Computacional/métodos , Interações Hospedeiro-Patógeno/imunologia , Modelos Teóricos , Saúde Pública , Controle de Doenças Transmissíveis , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/transmissão , Humanos
19.
Mol Biol Evol ; 34(2): 419-436, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836985

RESUMO

Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified.


Assuntos
Heterogeneidade Genética , Modelos Genéticos , Taxa de Mutação , Adaptação Fisiológica/genética , Evolução Biológica , Meio Ambiente , Evolução Molecular , Variação Genética , Genética Populacional , Genoma , Mutação , Seleção Genética
20.
PLoS Pathog ; 12(5): e1005611, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27196299

RESUMO

The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM) and men who have sex with men (MSM). We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months) compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months). We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW) and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW) and 3 (MSM) months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread.


Assuntos
Resistência Microbiana a Medicamentos/efeitos dos fármacos , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Gonorreia/transmissão , Adulto , Antibacterianos/uso terapêutico , Feminino , Humanos , Incidência , Masculino , Modelos Teóricos , Neisseria gonorrhoeae , Prevalência , Parceiros Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA