Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(12): 7595-7607, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36967114

RESUMO

The establishment of cortical representations critical for mounting language is supported by both ongoing neural maturation and experience-expectant plasticity as infants increasingly recognize the linguistic events that occur most often in their surrounding environment. Previous research has demonstrated that enhanced efficiency of syllabic representation and discrimination is facilitated by interactive attention-driven, nonspeech auditory experience. However, experience-dependent effects on syllable processing as a function of nonspeech, passive auditory exposure (PAE), remain unclear. As theta band-specific activity has been shown to support syllabic processing, we chose theta inter-trial phase synchrony to examine the experience-dependent effects of PAE on the processing of a syllable contrast. Results demonstrated that infants receiving PAE increased syllabic processing efficiency. Specifically, compared with controls, the group receiving PAE showed more mature, efficient processing, exhibiting less theta phase synchrony for the standard syllable at 9 months, and at 18 months, for the deviant syllable. Furthermore, the PAE modulatory effect on theta phase synchrony at 7 and 9 months was associated with language scores at 12 and 18 months. These findings confirm that supporting emerging perceptual abilities during early sensitive periods impacts syllabic processing efficiency and aligns with literature demonstrating associations between infant auditory perceptual abilities and later language outcomes.


Assuntos
Eletroencefalografia , Percepção da Fala , Humanos , Lactente , Eletroencefalografia/métodos , Potenciais Evocados Auditivos , Idioma , Desenvolvimento da Linguagem , Linguística , Estimulação Acústica/métodos
2.
Cereb Cortex ; 32(5): 919-932, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-34403462

RESUMO

Plasticity, a prominent characteristic of the infant brain, supports formation of cortical representations as infants begin to interact with and adapt to environmental sensory events. Enhanced acoustic processing efficiency along with improved allocation of attentional resources at 7 months and establishment of well-defined phonemic maps at 9 months have been shown to be facilitated by early interactive acoustic experience (IAE). In this study, using an oddball paradigm and measures of theta phase synchrony at source level, we examined short- and long-term effects of nonspeech IAE on syllable processing. Results demonstrated that beyond maturation alone, IAE increased the efficiency of syllabic representation and discrimination, an effect that endured well beyond the immediate training period. As compared with naive controls, the IAE-trained group at 7, 9, and 18 months showed less theta phase synchrony for the standard syllable and at 7 and 18 months for the deviant syllable. The decreased theta phase synchrony exhibited by the trained group suggests more mature, efficient, acoustic processing, and thus, better cortical representation and discrimination of syllabic content. Further, the IAE modulatory effect observed on theta phase synchrony in left auditory cortex at 7 and 9 months was differentially associated with receptive and expressive language scores at 12 and 18 months of age.


Assuntos
Córtex Auditivo , Percepção da Fala , Estimulação Acústica , Acústica , Encéfalo , Eletroencefalografia/métodos , Humanos , Lactente , Idioma
3.
Cereb Cortex ; 29(4): 1789-1801, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30722000

RESUMO

During early development, the infant brain is highly plastic and sensory experiences modulate emerging cortical maps, enhancing processing efficiency as infants set up key linguistic precursors. Early interactive acoustic experience (IAE) with spectrotemporally-modulated non-speech has been shown to facilitate optimal acoustic processing and generalizes to novel non-speech sounds at 7-months-of-age. Here we demonstrate that effects of non-speech IAE endure well beyond the immediate training period and robustly generalize to speech processing. Infants who received non-speech IAE differed at 9-months-of-age from both naïve controls and those with only passive acoustic exposure, demonstrating broad modulation of oscillatory dynamics. For the standard syllable, increased high-gamma (>70 Hz) power within auditory cortices indicates that IAE fosters native speech processing, facilitating establishment of phonemic representations. The higher left beta power seen may reflect increased linking of sensory information and corresponding articulatory patterns, while bilateral decreases in theta power suggest more mature automatized speech processing, as less neuronal resources were allocated to process syllabic information. For the deviant syllable, left-lateralized gamma (<70 Hz) enhancement suggests IAE promotes phonemic-related discrimination abilities. Theta power increases in right auditory cortex, known for favoring slow-rate decoding, implies IAE facilitates the more demanding processing of the sporadic deviant syllable.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Fala , Estudos Transversais , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Lactente , Aprendizagem , Estudos Longitudinais , Masculino , Fonética , Recompensa , Percepção Visual
4.
J Neurosci ; 36(48): 12095-12105, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903720

RESUMO

During the first months of life, human infants process phonemic elements from all languages similarly. However, by 12 months of age, as language-specific phonemic maps are established, infants respond preferentially to their native language. This process, known as perceptual narrowing, supports neural representation and thus efficient processing of the distinctive phonemes within the sound environment. Although oscillatory mechanisms underlying processing of native and non-native phonemic contrasts were recently delineated in 6-month-old infants, the maturational trajectory of these mechanisms remained unclear. A group of typically developing infants born into monolingual English families, were followed from 6 to 12 months and presented with English and Spanish syllable contrasts varying in voice-onset time. Brain responses were recorded with high-density electroencephalogram, and sources of event-related potential generators identified at right and left auditory cortices at 6 and 12 months and also at frontal cortex at 6 months. Time-frequency analyses conducted at source level found variations in both θ and γ ranges across age. Compared with 6-month-olds, 12-month-olds' responses to native phonemes showed smaller and faster phase synchronization and less spectral power in the θ range, and increases in left phase synchrony as well as induced high-γ activity in both frontal and left auditory sources. These results demonstrate that infants become more automatized and efficient in processing their native language as they approach 12 months of age via the interplay between θ and γ oscillations. We suggest that, while θ oscillations support syllable processing, γ oscillations underlie phonemic perceptual narrowing, progressively favoring mapping of native over non-native language across the first year of life. SIGNIFICANCE STATEMENT: During early language acquisition, typically developing infants gradually construct phonemic maps of their native language in auditory cortex. It is well known that, by 12 months of age, human infants move from universal discrimination of most linguistic phonemic contrasts to phonemic expertise in their native language. This perceptual narrowing occurs at the expense of the ability to process non-native phonemes. However, the neural mechanisms underlying this process are still poorly understood. Here we demonstrate that perceptual narrowing is, at least in part, accomplished by decreasing power and phase coherence in the θ range while increasing activity in high-γ in left auditory cortex. Understanding the normative neural mechanisms that support early language acquisition is crucial to understanding and perhaps ameliorating developmental language disorders.


Assuntos
Envelhecimento/fisiologia , Córtex Auditivo/fisiologia , Ritmo Gama/fisiologia , Desenvolvimento da Linguagem , Percepção da Fala/fisiologia , Ritmo Teta/fisiologia , Relógios Biológicos/fisiologia , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Lactente , Idioma , Masculino , Semântica
5.
J Neurosci ; 34(40): 13349-63, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274814

RESUMO

A major task across infancy is the creation and tuning of the acoustic maps that allow efficient native language processing. This process crucially depends on ongoing neural plasticity and keen sensitivity to environmental cues. Development of sensory mapping has been widely studied in animal models, demonstrating that cortical representations of the sensory environment are continuously modified by experience. One critical period for optimizing human language mapping is early in the first year; however, the neural processes involved and the influence of passive compared with active experience are as yet incompletely understood. Here we demonstrate that, while both active and passive acoustic experience from 4 to 7 months of age, using temporally modulated nonspeech stimuli, impacts acoustic mapping, active experience confers a significant advantage. Using event-related potentials (ERPs), we show that active experience increases perceptual vigilance/attention to environmental acoustic stimuli (e.g., larger and faster P2 peaks) when compared with passive experience or maturation alone. Faster latencies are also seen for the change discrimination peak (N2*) that has been shown to be a robust infant predictor of later language through age 4 years. Sharpening is evident for both trained and untrained stimuli over and above that seen for maturation alone. Effects were also seen on ERP morphology for the active experience group with development of more complex waveforms more often seen in typically developing 12- to 24-month-old children. The promise of selectively "fine-tuning" acoustic mapping as it emerges has far-reaching implications for the amelioration and/or prevention of developmental language disorders.


Assuntos
Mapeamento Encefálico , Encéfalo/crescimento & desenvolvimento , Potenciais Evocados Auditivos/fisiologia , Idioma , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Fatores Etários , Comportamento de Escolha/fisiologia , Condicionamento Operante , Estudos Transversais , Eletroencefalografia , Feminino , Generalização Psicológica , Humanos , Lactente , Estudos Longitudinais , Masculino
6.
medRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645148

RESUMO

Background: Community-acquired UTI is the most common bacterial infection managed in general medical practice that can lead to life-threatening outcomes. While UTIs are primarily caused by Escherichia coli colonizing the patient's gut, it is unclear whether the gut resident E. coli profiles can predict the person's risks for UTI and optimal antimicrobial treatments. Thus, we conducted an eighteen-month long community-based observational study of fecal E. coli colonization and UTI in women aged 50 years and above. Methods and Findings: We enrolled a total of 1,804 women distributed among age groups 50-59 yo (437 participants), 60-69 yo (632), 70-79 yo (532), and above 80 yo (203), lacking antibiotic prescriptions for at least one year. The provided fecal samples were plated for the presence of E. coli and other enterobacteria resistant to trimethoprim/sulfamethoxazole (TMP/STX), ciprofloxacin (CIP) and 3rd generation cephalosporins (3GC). E. coli was also characterized as belonging to the pandemic multi-drug resistant clonal groups ST131 (subclone H30) and ST1193. Following sample collection, the women were monitored for 18 months for occurrence of UTI.E. coli was cultured from 90.8% fecal samples, with 24.1% containing bacteria resistant to TMP/STX, 19.4% to CIP, and 7.9% to 3GC. In 62.5% samples, only all-susceptible E. coli were present. Overall, there were no age-related differences in resistance prevalence. However, while the total E. coli H30 and ST1193 carriage rates were similar (4.3% and 4.2%, respectively), there was a notable increase of H30 carriage with age (P = .001), while carriage decreased with age for ST1193 (P = .057).Within 18 months, 184 women (10.2%) experienced at least one episode of UTI - 10.9% among the gut E. coli carriers and 3.0% among the non-carriers (P=.0013). The UTI risk among carriers of E. coli H30 but not ST1193 was significantly above average (24.3%, P = .0004). The UTI probability increased with age, occurring in 6.4% of 50-59 yo and 19.7% of 80+ yo (P<.001), with the latter group being especially at high risk for UTI, if they were colonized by E. coli H30 (40.0%, P<.001).E. coli was identified in 88.1% of urine samples, with 16.1% resistant to TMP/STX, 16.1% to CIP, 4.2% to 3GC and 73.1% to none of the antibiotics. Among tested urinary E. coli resistant to antibiotics, 86.1% matched the resistance profile of E. coli in the fecal samples, with the clonotyping and whole genome sequencing confirming the matching strains' identity. Positive predictive value (PPV) of using gut resistance profiles to predict UTI pathogens' susceptibility to TMP/STX, CIP, 3GC and all three antibiotics were 98.4%, 98.3%, 96.6% and 95.3%, respectively. Corresponding negative predictive values (NPV) were 63.0%, 54.8%, 44.4% and 75.8%, respectively. The AUC ROC curve values for the accuracy of fecal diagnostic testing for the prediction of UTI resistance ranged .86-.89. The fecal test-guided drug-bug mismatch rate for empirical (pre-culture) prescription of TMP-SXT or CIP is reduced to ≤2% in 89.6% of patients and 94.8% of patients with an optional 3GC prescription. Conclusion: The resistance profile and clonal identity of gut colonizing E. coli, along with the carrier's age, can inform personalized prediction of a patients' UTI risk and the UTI pathogen's antibiotic susceptibility within an 18-month period.

7.
Commun Med (Lond) ; 3(1): 110, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37567971

RESUMO

BACKGROUND: Community circulating gut microbiota is the main reservoir for uropathogenic Escherichia coli, including those resistant to antibiotics. Ciprofloxacin had been the primary antibiotic prescribed for urinary tract infections, but its broad use has been discouraged and steadily declined since 2015. How this change in prescriptions affected the community circulation of ciprofloxacin-resistant E. coli is unknown. METHODS: We determined the frequency of isolation and other characteristics of E. coli resistant to ciprofloxacin in 515 and 1604 E. coli-positive fecal samples collected in 2015 and 2021, respectively. The samples were obtained from non-antibiotic-taking women of age 50+ receiving care in the Kaiser Permanente Washington healthcare system. RESULTS: Here we show that despite a nearly three-fold drop in the prescription of ciprofloxacin between 2015 and 2021, the rates of gut carriage of ciprofloxacin-resistant E. coli increased from 14.2 % to 19.8% (P = .004). This is driven by a significant increase of isolates from the pandemic multi-drug resistant clonal group ST1193 (1.7% to 4.2%; P = .009) and isolates with relatively few ciprofloxacin-resistance determining chromosomal mutations (2.3% to 7.4%; P = .00003). Though prevalence of isolates with the plasmid-associated ciprofloxacin resistance dropped (59.0% to 30.9%; P = 2.7E-06), the isolates co-resistance to third generation cephalosporins has increased from 14.1% to 31.5% (P = .002). CONCLUSIONS: Despite reduction in ciprofloxacin prescriptions, community circulation of the resistant uropathogenic E. coli increased with a rise of co-resistance to third generation cephalosporins. Thus, to reduce the rates of urinary tract infections refractory to antibiotic treatment, greater focus should be on controlling the resistant bacteria in gut microbiota.


The alarming rise of bacteria causing infections that are difficult to treat with antibiotics, known as multidrug-resistant bacteria, is a major problem in medicine. The reduction in the use of antibiotics has been encouraged to control the spread of antibiotic-resistant bacteria. Some multidrug-resistant bacteria reside in the gut of healthy individuals and can cause various forms of urinary tract infections (UTIs). Ciprofloxacin is an antibiotic that was widely used to treat UTIs, but strong recommendations to reduce its prescription have been recently introduced. We compared the presence of bacteria in the gut that could not be killed by ciprofloxacin in women aged 50 and above who do not use antibiotics and reside in the Seattle area. Despite a nearly three-fold drop in the prescription of ciprofloxacin between 2015 and 2021, antibiotic-resistant bacteria in the gut were found more frequently, affecting one in five women. Our study demonstrates that antibiotic-resistant bacteria continue to be present even when antibiotic prescriptions are reduced, demonstrating the need to undertake further similar studies.

8.
Res Sq ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36712036

RESUMO

Background : Fluoroquinolone use for urinary tract infections has been steadily declining. Gut microbiota is the main reservoir for uropathogenic Escherichia coli but whether the carriage of fluoroquinolone-resistant E. coli has been changing is unknown. Methods . We determined the frequency of isolation and other characteristics of E. coli nonsuceptible to fluoroquinolones (at ³0.5 mg/L of ciprofloxacin) in 515 and 1605 E. coli -positive fecal samples collected in 2015 and 2021, respectively, from non-antibiotic- taking women of age 50+ receiving care in the Seattle area Kaiser Permanente Washington healthcare system. Results . Between 2015 and 2021 the prescription of fluoroquinolones dropped nearly three-fold in the study population. During the same period, the rates of gut carriage of fluoroquinolone-resistant E. coli increased from 14.4 % to 19.9% (P=.005), driven by a significant increase of isolates from the recently emerged, pandemic multi-drug resistant clonal group ST1193 (1.7% to 4.3%; P=.007) and those with an incomplete set of or no fluoroquinolone-resistance determining mutations (2.3% to 7.5%; P<.001). While prevalence of the resistance-associated mobile genes among the isolates dropped from 64.1% to 32.6% (P<.001), co-resistance to third generation cephalosporins has increased 21.5% to 33.1%, P=.044). Conclusion . Despite reduction in fluoroquinolone prescriptions, gut carriage of fluoroquinolone-resistant uropathogenic E. coli increased with a rise of previously sporadic lineages and co-resistance to third generation cephalosporins. Thus, to reduce the rates of antibiotic resistant urinary tract infections, greater focus should be on controlling the gut carriage of resistant bacteria.

9.
Appl Environ Microbiol ; 77(15): 5412-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685161

RESUMO

Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.


Assuntos
Antibiose/fisiologia , Fragaria/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Controle Biológico de Vetores , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/metabolismo , Antibiose/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Solanum lycopersicum/microbiologia , Mutação , Phytophthora/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/citologia , Pseudomonas fluorescens/genética , Rizosfera , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Learn Disabil ; 42(1): 61-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19011122

RESUMO

The aim of the study was to examine the profiles of children with a family history (FH+) of language-learning impairments (LLI) and a control group of children with no reported family history of LLI (FH-) and identify which language constructs (receptive or expressive) and which ages (2 or 3 years) are related to expressive and receptive language abilities, phonological awareness, and reading abilities at ages 5 and 7 years. Participants included 99 children (40 FH+ and 59 FH-) who received a standardized neuropsychological battery at 2, 3, 5, and 7 years of age. As a group, the FH+ children had significantly lower scores on all language measures at 2 and 3 years, on selected language and phonological awareness measures at 5 years, and on phonological awareness and nonword reading at 7 years. Language comprehension at 3 years was the best predictor of later language and early reading for both groups. These results support past work suggesting that children with a positive family history of LLI are at greater risk for future language and reading problems through their preschool and early school-age years. Furthermore, language comprehension in the early years is a strong predictor of future language-learning status.


Assuntos
Transtornos do Desenvolvimento da Linguagem/genética , Testes de Linguagem/normas , Leitura , Conscientização , Criança , Pré-Escolar , Compreensão , Dislexia/diagnóstico , Dislexia/genética , Dislexia/terapia , Intervenção Educacional Precoce , Feminino , Humanos , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/terapia , Masculino , Testes Neuropsicológicos/estatística & dados numéricos , Fonética , Psicometria , Medição de Risco/estatística & dados numéricos
11.
Dev Cogn Neurosci ; 26: 9-19, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28436834

RESUMO

Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx), over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx) or maturation alone (Naïve Control, NC). Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD) elicited greater Theta-band (4-6Hz) activity in Right Auditory Cortex (RAC), as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV) elicited larger responses in Left Auditory Cortex (LAC). PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33-37Hz) activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Lactente , Masculino
12.
Neuropsychologia ; 44(3): 396-411, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16054661

RESUMO

Associations between efficient processing of brief, rapidly presented, successive stimuli and language learning impairments (LLI) in older children and adults have been well documented. In this paper we examine the role that impaired rapid auditory processing (RAP) might play during early language acquisition. Using behavioral measures we have demonstrated that RAP abilities in infancy are critically linked to later language abilities for both non-speech and speech stimuli. Variance in infant RAP thresholds reliably predict language outcome at 3 years-of-age for infants at risk for LLI and control infants. We present data here describing patterns of electrocortical (EEG/ERP) activation at 6 month-of-age to the same non-verbal stimuli used in our behavioral studies. Well-defined differences were seen between infants from families with a history of LLI (FH+) and FH- controls in the amplitude of the mismatch response (MMR) as well as the latency of the N250 component in the 70 ms ISI condition only. Smaller mismatch responses and delayed onsets of the N250 component were seen in the FH+ group. The latency differences in the N250 component, but not the MMR amplitude variation, were significantly related to 24-month language outcome. Such converging tasks provide the opportunity to examine early precursors of LLI and allow the opportunity for earlier identification and intervention.


Assuntos
Eletroencefalografia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Modelos Neurológicos , Discriminação da Altura Tonal/fisiologia , Tempo de Reação/fisiologia , Processamento de Sinais Assistido por Computador , Percepção da Fala/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Pré-Escolar , Dominância Cerebral/fisiologia , Potenciais Evocados Auditivos/fisiologia , Feminino , Seguimentos , Predisposição Genética para Doença/genética , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Valores de Referência , Risco
13.
J Vis Exp ; (101): e52420, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26167670

RESUMO

Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net application, recording, dynamic brain response analysis, and representative results.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Humanos , Lactente
14.
J Speech Lang Hear Res ; 46(3): 530-43, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14696984

RESUMO

Two family aggregation studies report the occurrence and co-occurrence of oral language impairments (LIs) and reading impairments (RIs). Study 1 examined the occurrence (rate) of LI and RI in children with specific language impairment (SLI probands), a matched control group, and all nuclear family members. Study 2 included a larger sample of SLI probands, as well as their nuclear and extended family members. Probands and their family members who met specific criteria were classified as language and/or reading impaired based on current testing. In Study 1, the rates of LI and RI for nuclear family members (excluding probands) were significantly higher than those for control family members. In the SLI families, affected family members were more likely to have both LI and RI than either impairment alone. In Study 2, 68% of the SLI probands also met the diagnostic classification for RI. The language and RI rates for the other family members, excluding probands, were 25% and 23% respectively, with a high degree of co-occurrence of LI and RI (46%) in affected individuals. Significant sex ratio differences were found across generations in the families of SLI probands. There were more male than female offspring in these families, and more males than females were found to have both LIs and RIs. Results demonstrate that when LIs occur within families of SLI probands, these impairments generally co-occur with RIs. Our data are also consistent with prior findings that males show impairments more often than females.


Assuntos
Dislexia/genética , Transtornos da Linguagem/genética , Adulto , Criança , Comorbidade , Dislexia/diagnóstico , Dislexia/epidemiologia , Família , Feminino , Ligação Genética , Humanos , Transtornos da Linguagem/diagnóstico , Transtornos da Linguagem/epidemiologia , Testes de Linguagem , Masculino , New Jersey/epidemiologia , Fatores Sexuais
15.
Neuropsychologia ; 51(13): 2812-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24055540

RESUMO

Rapid auditory processing and auditory change detection abilities are crucial aspects of speech and language development, particularly in the first year of life. Animal models and adult studies suggest that oscillatory synchrony, and in particular low-frequency oscillations play key roles in this process. We hypothesize that infant perception of rapid pitch and timing changes is mediated, at least in part, by oscillatory mechanisms. Using event-related potentials (ERPs), source localization and time-frequency analysis of event-related oscillations (EROs), we examined the neural substrates of rapid auditory processing in 4-month-olds. During a standard oddball paradigm, infants listened to tone pairs with invariant standard (STD, 800-800 Hz) and variant deviant (DEV, 800-1200 Hz) pitch. STD and DEV tone pairs were first presented in a block with a short inter-stimulus interval (ISI) (Rapid Rate: 70 ms ISI), followed by a block of stimuli with a longer ISI (Control Rate: 300 ms ISI). Results showed greater ERP peak amplitude in response to the DEV tone in both conditions and later and larger peaks during Rapid Rate presentation, compared to the Control condition. Sources of neural activity, localized to right and left auditory regions, showed larger and faster activation in the right hemisphere for both rate conditions. Time-frequency analysis of the source activity revealed clusters of theta band enhancement to the DEV tone in right auditory cortex for both conditions. Left auditory activity was enhanced only during Rapid Rate presentation. These data suggest that local low-frequency oscillatory synchrony underlies rapid processing and can robustly index auditory perception in young infants. Furthermore, left hemisphere recruitment during rapid frequency change discrimination suggests a difference in the spectral and temporal resolution of right and left hemispheres at a very young age.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Estimulação Acústica , Análise de Variância , Feminino , Lateralidade Funcional/fisiologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Oscilometria , Análise Espectral , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA