Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454541

RESUMO

The increase of environmental temperature due to current global warming is not only favouring the expansion of the distribution range of many insect species, but it is also changing their phenology. Insect phenology is tightly linked to developmental timing, which is regulated by environmental temperatures. However, the degree to which the effects of developmental temperatures extend across developmental stages and their inter-stage relationships have not been thoroughly quantified in mosquitoes. Here, we used the mosquito Aedes albopictus, which is an aggressive invasive species and an arboviral vector, to study how developmental temperature influences fitness across developmental stages, thermal traits, energy reserves, transcriptome and Wolbachia prevalence in laboratory-reared populations originally collected from either temperate or tropical regions. We show that hatchability, larval and pupal viability and developmental speed are strongly influenced by temperature, and these effects extend to wing length, body mass, longevity and content of water, protein and lipids in adults in a population-specific manner. On the contrary, neither adult thermal preference nor heat resistance significantly change with temperature. Wolbachia density was generally lower in adult mosquitoes reared at 18°C than at other tested temperatures, and transcriptome analysis showed enrichment for functions linked to stress responses (i.e. cuticle proteins and chitin, cytochrome p450 and heat shock proteins) in mosquitoes reared at both 18 and 32°C. Our data showed an overall reduced vector fitness performance when mosquitoes were reared at 32°C, and the absence of isomorphy in the relationship between developmental stages and temperature in the laboratory population deriving from larvae collected in northern Italy. Altogether, these results have important implications for reliable model projections of the invasion potentials of Ae. albopictus and its epidemiological impact.


Assuntos
Aedes , Mudança Climática , Animais , Temperatura , Aedes/fisiologia , Aquecimento Global , Larva/fisiologia
2.
Virol J ; 19(1): 190, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401331

RESUMO

BACKGROUND: Aedes albopictus is a public health threat for its worldwide spread and ability to transmit arboviruses. Understanding mechanisms of mosquito immunity can provide new tools to control arbovirus spread. The genomes of Aedes mosquitoes contain hundreds of nonretroviral endogenous viral elements (nrEVEs), which are enriched in piRNA clusters and produce piRNAs, with the potential to target cognate viruses. Recently, one nrEVE was shown to limit cognate viral infection through nrEVE-derived piRNAs. These findings suggest that nrEVEs constitute an archive of past viral infection and that the landscape of viral integrations may be variable across populations depending on their viral exposure. METHODS: We used bioinformatics and molecular approaches to identify known and novel (i.e. absent in the reference genome) viral integrations in the genome of wild collected Aedes albopictus mosquitoes and characterize their virome. RESULTS: We showed that the landscape of viral integrations is dynamic with seven novel viral integrations being characterized, but does not correlate with the virome, which includes both viral species known and unknown to infect mosquitoes. However, the small RNA coverage profile of nrEVEs and the viral genomic contigs we identified confirmed an interaction among these elements and the piRNA and siRNA pathways in mosquitoes. CONCLUSIONS: Mosquitoes nrEVEs have been recently described as a new form of heritable, sequence-specific mechanism of antiviral immunity. Our results contribute to understanding the dynamic distribution of nrEVEs in the genomes of wild Ae. albopictus and their interaction with mosquito viruses.


Assuntos
Aedes , Vírus , Animais , Viroma , RNA Interferente Pequeno/genética , Reunião , Integração Viral , Vírus/genética
3.
BMC Bioinformatics ; 22(1): 45, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541262

RESUMO

BACKGROUND: Several bioinformatics pipelines have been developed to detect sequences from viruses that integrate into the human genome because of the health relevance of these integrations, such as in the persistence of viral infection and/or in generating genotoxic effects, often progressing into cancer. Recent genomics and metagenomics analyses have shown that viruses also integrate into the genome of non-model organisms (i.e., arthropods, fish, plants, vertebrates). However, rarely studies of endogenous viral elements (EVEs) in non-model organisms have gone beyond their characterization from reference genome assemblies. In non-model organisms, we lack a thorough understanding of the widespread occurrence of EVEs and their biological relevance, apart from sporadic cases which nevertheless point to significant roles of EVEs in immunity and regulation of expression. The concomitance of repetitive DNA, duplications and/or assembly fragmentations in a genome sequence and intrasample variability in whole-genome sequencing (WGS) data could determine misalignments when mapping data to a genome assembly. This phenomenon hinders our ability to properly identify integration sites. RESULTS: To fill this gap, we developed ViR, a pipeline which solves the dispersion of reads due to intrasample variability in sequencing data from both single and pooled DNA samples thus ameliorating the detection of integration sites. We tested ViR to work with both in silico and real sequencing data from a non-model organism, the arboviral vector Aedes albopictus. Potential viral integrations predicted by ViR were molecularly validated supporting the accuracy of ViR results. CONCLUSION: ViR will open new venues to explore the biology of EVEs, especially in non-model organisms. Importantly, while we generated ViR with the identification of EVEs in mind, its application can be extended to detect any lateral transfer event providing an ad-hoc sequence to interrogate.


Assuntos
Mosquitos Vetores , Integração Viral , Sequenciamento Completo do Genoma , Animais , Biologia Computacional , Genoma Viral , Genômica , Humanos , Integração Viral/genética
4.
Mol Ecol ; 30(7): 1594-1611, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432714

RESUMO

Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus. Thus, nrEVEs may constitute a heritable, sequence-specific mechanism for antiviral immunity, analogous to piRNA-mediated silencing of transposable elements. Here, we combine population genomics and evolutionary approaches to analyse the genomic architecture of nrEVEs in A. aegypti. We conducted a genome-wide screen for adaptive nrEVEs and searched for novel population-specific nrEVEs in the genomes of 80 individual wild-caught mosquitoes from five geographical populations. We show a dynamic landscape of nrEVEs in mosquito genomes and identified five novel nrEVEs derived from two currently circulating viruses, providing evidence of the environmental-dependent modification of a piRNA cluster. Overall, our results show that virus endogenization events are complex with only a few nrEVEs contributing to adaptive evolution in A. aegypti.


Assuntos
Aedes , Aedes/genética , Animais , Genômica , Metagenômica , Mosquitos Vetores/genética , RNA Interferente Pequeno/genética
5.
Curr Issues Mol Biol ; 34: 13-30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31167954

RESUMO

Modern genomic sequencing and bioinformatics approaches have detected numerous examples of DNA sequences derived from DNA and RNA virus genomes integrated into both vertebrate and insect genomes. Retroviruses encode RNA-dependent DNA polymerases (reverse transcriptases) and integrases that convert their RNA viral genomes into DNA proviruses and facilitate proviral DNA integration into the host genome. Surprisingly, DNA sequences derived from RNA viruses that do not encode these enzymes also occur in host genomes. Non-retroviral integrated RNA virus sequences (NIRVS) occur at relatively high frequency in the genomes of the arboviral vectors Aedes aegypti and Aedes albopictus, are not distributed randomly and possibly contribute to mosquito antiviral immunity, suggesting these mosquitoes could serve as a model system for unravelling the function of NIRVS. Here we address the following questions: What drives DNA synthesis from the genomes of non-retroviral RNA viruses? How does integration of virus cDNA into host DNA occur, and what is its biological function (if any)? We review current knowledge of viral integrations in insect genomes, hypothesize mechanisms of NIRVS formation and their potential impact on insect biology, particularly antiviral immunity, and suggest directions for future research.


Assuntos
Genoma de Inseto , Genômica , Insetos/genética , Integração Viral , Aedes/virologia , Animais , Biologia Computacional/métodos , Vírus de DNA/genética , Retrovirus Endógenos , Genômica/métodos , Interações Hospedeiro-Patógeno , Mosquitos Vetores/virologia , Vírus de RNA/genética , RNA Interferente Pequeno/genética , Retroelementos
6.
Malar J ; 18(1): 112, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940139

RESUMO

BACKGROUND: Physiological characteristics (age and blood feeding status) of malaria vectors can influence their susceptibility to the current vector control tools that target their feeding and resting behaviour. To ensure the sustainability of the current and future vector control tools an understanding of how physiological characteristics may contribute to insecticide tolerance in the field is fundamental for shaping resistance management strategies and vector control tools. The aim of this study was to determine whether blood meal and mosquito age affect pyrethroid tolerance in field-collected Anopheles gambiae from western Kenya. METHODS: Wild mosquito larvae were reared to adulthood alongside the pyrethroid-susceptible Kisumu strain. Adult females from the two populations were monitored for deltamethrin resistance when they were young at 2-5 days old and older 14-16 days old and whether fed or unfed for each age group. Metabolic assays were also performed to determine the level of detoxification enzymes. Mosquito specimens were further identified to species level using the polymerase chain reaction (PCR) method. RESULTS: Anopheles gambiae sensu stricto was the predominant species comprising 96% of specimens and 2.75% Anopheles arabiensis. Bioassay results showed reduced pyrethroid induced mortality with younger mosquitoes compared to older ones (mortality rates 83% vs. 98%), independently of their feeding status. Reduced mortality was recorded with younger females of which were fed compared to their unfed counterparts of the same age with a mortality rate of 35.5% vs. 83%. Older blood-fed females showed reduced susceptibility after exposure when compared to unfed females of the same age (mortality rates 86% vs. 98%). For the Kisumu susceptible population, mortality was straight 100% regardless of age and blood feeding status. Blood feeding status and mosquito age had an effect on enzyme levels in both populations, with blood fed individuals showing higher enzyme elevations compared to their unfed counterparts (P < 0.0001). The interaction between mosquito age and blood fed status had significant effect on mosquito mortality. CONCLUSION: The results showed that mosquito age and blood feeding status confers increased tolerance to insecticides as blood feeding may be playing an important role in the toxicity of deltamethrin, allowing mosquitoes to rest on insecticide-treated materials despite treatment. These may have implications for the sustained efficacy of indoor residual spraying and insecticide-treated nets based control programmes that target indoor resting female mosquitoes of various gonotrophic status.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Tolerância a Medicamentos , Inseticidas/farmacologia , Piretrinas/farmacologia , Fatores Etários , Animais , Anopheles/classificação , Anopheles/genética , Comportamento Alimentar , Feminino , Técnicas de Genotipagem , Quênia , Nitrilas/farmacologia , Reação em Cadeia da Polimerase
7.
Proc Natl Acad Sci U S A ; 112(44): E5907-15, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483478

RESUMO

The Asian tiger mosquito, Aedes albopictus, is a highly successful invasive species that transmits a number of human viral diseases, including dengue and Chikungunya fevers. This species has a large genome with significant population-based size variation. The complete genome sequence was determined for the Foshan strain, an established laboratory colony derived from wild mosquitoes from southeastern China, a region within the historical range of the origin of the species. The genome comprises 1,967 Mb, the largest mosquito genome sequenced to date, and its size results principally from an abundance of repetitive DNA classes. In addition, expansions of the numbers of members in gene families involved in insecticide-resistance mechanisms, diapause, sex determination, immunity, and olfaction also contribute to the larger size. Portions of integrated flavivirus-like genomes support a shared evolutionary history of association of these viruses with their vector. The large genome repertory may contribute to the adaptability and success of Ae. albopictus as an invasive species.


Assuntos
Aedes/genética , Evolução Molecular , Genoma de Inseto , Aedes/classificação , Aedes/fisiologia , Animais , Filogenia
8.
BMC Genomics ; 18(1): 512, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28676109

RESUMO

BACKGROUND: Arthropod-borne viruses (arboviruses) transmitted by mosquito vectors cause many important emerging or resurging infectious diseases in humans including dengue, chikungunya and Zika. Understanding the co-evolutionary processes among viruses and vectors is essential for the development of novel transmission-blocking strategies. Episomal viral DNA fragments are produced from arboviral RNA upon infection of mosquito cells and adults. Additionally, sequences from insect-specific viruses and arboviruses have been found integrated into mosquito genomes. RESULTS: We used a bioinformatic approach to analyse the presence, abundance, distribution, and transcriptional activity of integrations from 425 non-retroviral viruses, including 133 arboviruses, across the presently available 22 mosquito genome sequences. Large differences in abundance and types of viral integrations were observed in mosquito species from the same region. Viral integrations are unexpectedly abundant in the arboviral vector species Aedes aegypti and Ae. albopictus, in which they are approximately ~10-fold more abundant than in other mosquito species analysed. Additionally, viral integrations are enriched in piRNA clusters of both the Ae. aegypti and Ae. albopictus genomes and, accordingly, they express piRNAs, but not siRNAs. CONCLUSIONS: Differences in the number of viral integrations in the genomes of mosquito species from the same geographic area support the conclusion that integrations of viral sequences is not dependent on viral exposure, but that lineage-specific interactions exist. Viral integrations are abundant in Ae. aegypti and Ae. albopictus, and represent a thus far underappreciated component of their genomes. Additionally, the genome locations of viral integrations and their production of piRNAs indicate a functional link between viral integrations and the piRNA pathway. These results greatly expand the breadth and complexity of small RNA-mediated regulation and suggest a role for viral integrations in antiviral defense in these two mosquito species.


Assuntos
Aedes/genética , Arbovírus/metabolismo , RNA Interferente Pequeno , Integração Viral , Aedes/metabolismo , Aedes/virologia , Animais , Arbovírus/genética , Culicidae/genética , Culicidae/metabolismo , Culicidae/virologia , DNA Viral , Genoma de Inseto , Genômica , Filogenia
10.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559099

RESUMO

Mosquitoes occupy a wide range of habitats where they experience various environmental conditions. The ability of some species, such as the tiger mosquito, Aedes albopictus, to adapt to local conditions certainly contributes to their invasive success. Among traits that remain to be examined, mosquitoes' ability to time their activity with that of the local host population has been suggested to be of significant epidemiological importance. However, whether different populations display heritable differences in their chronotype has not been examined. Here, we compared laboratory strains originating from 8 populations from 3 continents, monitored their spontaneous locomotor activity patterns, and analyzed their sleep-like states. Overall, all strains showed conserved diurnal activity concentrated in the hours preceding the crepuscule. Similarly, they all showed increased sleep levels during the morning and night hours. However, we observed strain-specific differences in the activity levels at each phase of the day. We also observed differences in the fraction of time that each strain spends in a sleep-like state, explained by variations in the sleep architecture across strains. Human population density and the latitude of the site of geographic origin of the tested strain showed significant effects on sleep and activity patterns. Altogether, these results suggest that Ae. albopictus mosquitoes adapt to local environmental conditions via heritable adaptations of their chronotype.

11.
Parasit Vectors ; 17(1): 106, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439081

RESUMO

BACKGROUND: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases. Developing an accessible genotyping platform is essential in advancing biological control methods and understanding the population dynamics of this pest species, with significant implications for public health. METHODS: We designed a SNP chip for Ae. albopictus (Aealbo chip) based on approximately 2.7 million SNPs identified using WGS data from 819 worldwide samples. We validated the chip using laboratory single-pair crosses, comparing technical replicates, and comparing genotypes of samples genotyped by WGS and the SNP chip. We then used the chip for a population genomic analysis of 237 samples from 28 sites in the native range to evaluate its usefulness in describing patterns of genomic variation and tracing the origins of invasions. RESULTS: Probes on the Aealbo chip targeted 175,396 SNPs in coding and non-coding regions across all three chromosomes, with a density of 102 SNPs per 1 Mb window, and at least one SNP in each of the 17,461 protein-coding genes. Overall, 70% of the probes captured the genetic variation. Segregation analysis found that 98% of the SNPs followed expectations of single-copy Mendelian genes. Comparisons with WGS indicated that sites with genotype disagreements were mostly heterozygotes at loci with WGS read depth < 20, while there was near complete agreement with WGS read depths > 20, indicating that the chip more accurately detects heterozygotes than low-coverage WGS. Sample sizes did not affect the accuracy of the SNP chip genotype calls. Ancestry analyses identified four to five genetic clusters in the native range with various levels of admixture. CONCLUSIONS: The Aealbo chip is highly accurate, is concordant with genotypes from WGS with high sequence coverage, and may be more accurate than low-coverage WGS.


Assuntos
Aedes , Mosquitos Vetores , Humanos , Animais , Genótipo , Mosquitos Vetores/genética , Heterozigoto , Aedes/genética
12.
BMC Genomics ; 14: 739, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24168143

RESUMO

BACKGROUND: Dengue is the most prevalent arboviral disease world-wide and its primary vector is the mosquito Aedes aegypti. The current lack of commercially-available vaccines makes control of vector populations the only effective strategy to prevent dengue transmission. Aedes aegypti geographic populations exhibit great variability in insecticide resistance and susceptibility to dengue infection. The characterization of single nucleotide polymorphisms (SNPs) as molecular markers to study quantitatively this variation is needed greatly because this species has a low abundance of microsatellite markers and limited known restriction fragments length polymorphisms (RFLPs) and single-strand conformation polymorphism (SSCP) markers. RESULTS: We used RNA-seq to characterize SNPs in three Ae. aegypti strains, including the Liverpool (LVP) strain, from which the current genome annotation is derived. We identified 131,764 unique genome locations with at least one alternative nucleotide to what is reported in the reference annotation. These comprised changes in both open-reading frames (ORFs) and untranslated regions (UTRs) of transcripts. An in depth-look at sequence variation in immunity genes revealed that those associated with autophagy, MD2-like receptors and Peptidoglycan Recognition Proteins had more sequence variation in their 3'UTRs than mutations associated with non-synonymous changes. This supports the conclusion that these genes had maintained their functional specificity while being adapted to different regulatory domains. In contrast, a number of peroxidases, serpins and Clip-domain serine proteases exhibited conservation of putative UTR regulatory sequences while displaying diversification of the ORFs. Transcriptome evidence also was found for ~2500 novel transcriptional units (NTUs) not annotated in the reference genome. CONCLUSIONS: The transcriptome-wide assessment of within and inter-strain polymorphisms in Ae. aegypti adds considerably to the number of molecular markers available for genetic studies in this mosquito. Additionally, data supporting NTU discovery emphasizes the need for continuous amendments of the reference genome annotation.


Assuntos
Aedes/genética , Vírus da Dengue/fisiologia , Animais , Feminino , Biblioteca Gênica , Genoma , Insetos Vetores/metabolismo , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Transcriptoma , Regiões não Traduzidas/genética
13.
Curr Opin Insect Sci ; 51: 100920, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421621

RESUMO

The increasing incidence of arboviral diseases in tropical endemic areas and their emergence in new temperate countries is one of the most important challenges that Public Health agencies are currently facing. Because mosquitoes are poikilotherms, shifts in temperature influence physiological functions besides egg viability. These traits impact not only vector density, but also their interaction with their hosts and arboviruses. As such the relationship among mosquitoes, arboviral diseases and temperature is complex. Here, we summarize current knowledge on the thermal biology of Aedes invasive mosquitoes, highlighting differences among species. We also emphasize the need to expand knowledge on the variability in thermal sensitivity across populations within a species, especially in light of climate change that encompasses increase not only in mean environmental temperature but also in the frequency of hot and cold snaps. Finally, we suggest a novel experimental approach to investigate the molecular architecture of thermal adaptation in mosquitoes.


Assuntos
Aedes , Infecções por Arbovirus , Arbovírus , Animais , Biologia , Mudança Climática , Mosquitos Vetores/fisiologia
14.
Methods Mol Biol ; 2509: 293-313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796971

RESUMO

The transfer of genetic material between viruses and eukaryotic cells is pervasive. Somatic integrations of DNA viruses and retroviruses have been linked to persistent viral infection and genotoxic effects. Integrations into germline cells, referred to as Endogenous Viral Elements (EVEs), can be co-opted for host functions. Besides DNA viruses and retroviruses, EVEs can also derive from nonretroviral RNA viruses, which have often been observed in piRNA clusters. Here, we describe a bioinformatic framework to annotate EVEs in a genome assembly, study their widespread occurrence and polymorphism and identify sample-specific viral integrations using whole genome sequencing data.


Assuntos
Vírus de RNA , Vírus , Vírus de DNA/genética , Vírus de RNA/genética , RNA Interferente Pequeno/genética , Integração Viral , Vírus/genética
15.
Curr Opin Insect Sci ; 49: 22-30, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34740858

RESUMO

Integrations from non-retroviral RNA viruses (nrEVEs) have been identified across several taxa, including mosquitoes. Amongst all Culicinae species, the viral vectors Aedes aegypti and Aedes albopictus stand out for their high number of nrEVEs. In addition, Aedes nrEVEs are enriched in piRNA clusters and generate piRNAs that can silence incoming viral genomes. As such, nrEVEs represent a new form of inherited antiviral immunity. To propel this discovery into novel transmission-blocking vector control strategies, a deeper understanding of nrEVE biology and evolution is essential because differences in the landscape of nrEVEs have been identified in wild-caught mosquitoes, the piRNA profile of nrEVEs is not homogeneous and nrEVEs outside piRNA clusters exist and are expressed at the mRNA level. Here we summarise current knowledge on nrEVEs in mosquitoes and we point out the many unanswered questions and potentials of these genomic elements.


Assuntos
Aedes , Vírus de RNA , Aedes/genética , Animais , Genoma Viral , Mosquitos Vetores , RNA Interferente Pequeno/genética
16.
BMC Genomics ; 12: 82, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21276245

RESUMO

BACKGROUND: Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito Aedes aegypti (Diptera, Culicidae), a vector of Dengue viruses, Yellow Fever Virus (YFV) and Chikungunya virus (CV), is the subject of this study to look at genome-wide changes in gene expression following a blood meal. RESULTS: Transcriptional changes that follow a blood meal in Ae. aegypti females were explored using RNA-seq technology. Over 30% of more than 18,000 investigated transcripts accumulate differentially in mosquitoes at five hours after a blood meal when compared to those fed only on sugar. Forty transcripts accumulate only in blood-fed mosquitoes. The list of regulated transcripts correlates with an enhancement of digestive activity and a suppression of environmental stimuli perception and innate immunity. The alignment of more than 65 million high-quality short reads to the Ae. aegypti reference genome permitted the refinement of the current annotation of transcript boundaries, as well as the discovery of novel transcripts, exons and splicing variants. Cis-regulatory elements (CRE) and cis-regulatory modules (CRM) enriched significantly at the 5'end flanking sequences of blood meal-regulated genes were identified. CONCLUSIONS: This study provides the first global view of the changes in transcript accumulation elicited by a blood meal in Ae. aegypti females. This information permitted the identification of classes of potentially co-regulated genes and a description of biochemical and physiological events that occur immediately after blood feeding. The data presented here serve as a basis for novel vector control and pathogen transmission-blocking strategies including those in which the vectors are modified genetically to express anti-pathogen effector molecules.


Assuntos
Aedes/genética , Sangue , Insetos Vetores/genética , Animais , Feminino , Regulação da Expressão Gênica/genética , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Viruses ; 13(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452522

RESUMO

Viruses are excellent manipulators of host cellular machinery, behavior, and life cycle, with the host cell cytoskeleton being a primordial viral target. Viruses infecting insects generally enter host cells through clathrin-mediated endocytosis or membrane fusion mechanisms followed by transport of the viral particles to the corresponding replication sites. After viral replication, the viral progeny egresses toward adjacent cells and reaches the different target tissues. Throughout all these steps, actin and tubulin re-arrangements are driven by viruses. The mechanisms used by viruses to manipulate the insect host cytoskeleton are well documented in the case of alphabaculoviruses infecting Lepidoptera hosts and plant viruses infecting Hemiptera vectors, but they are not well studied in case of other insect-virus systems such as arboviruses-mosquito vectors. Here, we summarize the available knowledge on how viruses manipulate the insect host cell cytoskeleton, and we emphasize the primordial role of cytoskeleton components in insect virus motility and the need to expand the study of this interaction.


Assuntos
Vírus de Insetos/fisiologia , Insetos/virologia , Animais , Citoesqueleto/virologia , Interações Hospedeiro-Patógeno , Vírus de Insetos/genética , Insetos/fisiologia
18.
Front Microbiol ; 12: 624170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584626

RESUMO

The mosquito body hosts highly diverse microbes, which influence different physiological traits of both larvae and adults. The composition of adult mosquito microbiota is tightly linked to that of larvae, which are aquatic and feed on organic detritus, algae and prokaryotic microorganisms present in their breeding sites. Unraveling the ecological features of larval habitats that shape the structure of bacterial communities and their interactions with the mosquito host is still a poorly investigated topic in the Asian tiger mosquito Aedes albopictus, a highly invasive species that is vector of numerous arboviruses, including Dengue, Chikungunya, and Zika viruses. In this study, we investigated the composition of the bacterial community present in the water from a natural larval breeding site in which we separately reared wild-collected larvae and hatched eggs of the Foshan reference laboratory strain. Using sequence analysis of bacterial 16S rRNA gene amplicons, we comparatively analyzed the microbiota of the larvae and that of adult mosquitoes, deriving information about the relative impact of the breeding site water on shaping mosquito microbiota. We observed a higher bacterial diversity in breeding site water than in larvae or adults, irrespective of the origin of the sample. Moreover, larvae displayed a significantly different and most diversified microbial community than newly emerged adults, which appeared to be dominated by Proteobacteria. The microbiota of breeding site water significantly increased its diversity over time, suggesting the presence of a dynamic interaction among bacterial communities, breeding sites and mosquito hosts. The analysis of Wolbachia prevalence in adults from Foshan and five additional strains with different geographic origins confirmed the described pattern of dual wAlbA and wAlbB strain infection. However, differences in Wolbachia prevalence were detected, with one strain from La Reunion Island showing up to 18% uninfected individuals. These findings contribute in further understanding the dynamic interactions between the ecology of larval habitats and the structure of host microbiota, as well as providing additional information relative to the patterns of Wolbachia infection.

19.
Viruses ; 13(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806250

RESUMO

The Asian tiger mosquito Aedes albopictus is contributing to the (re)-emergence of Chikungunya virus (CHIKV). To gain insights into the molecular underpinning of viral persistence, which renders a mosquito a life-long vector, we coupled small RNA and whole genome sequencing approaches on carcasses and ovaries of mosquitoes sampled 14 days post CHIKV infection and investigated the profile of small RNAs and the presence of vDNA fragments. Since Aedes genomes harbor nonretroviral Endogenous Viral Elements (nrEVEs) which confers tolerance to cognate viral infections in ovaries, we also tested whether nrEVEs are formed after CHIKV infection. We show that while small interfering (si)RNAs are evenly distributed along the full viral genome, PIWI-interacting (pi)RNAs mostly arise from a ~1000 bp window, from which a unique vDNA fragment is identified. CHIKV infection does not result in the formation of new nrEVEs, but piRNAs derived from existing nrEVEs correlate with differential expression of an endogenous transcript. These results demonstrate that all three RNAi pathways contribute to the homeostasis during the late stage of CHIKV infection, but in different ways, ranging from directly targeting the viral sequence to regulating the expression of mosquito transcripts and expand the role of nrEVEs beyond immunity against cognate viruses.


Assuntos
Aedes/virologia , Vírus Chikungunya/genética , DNA Viral/genética , Genoma Viral , Pequeno RNA não Traduzido/genética , Integração Viral/genética , Animais , Febre de Chikungunya/imunologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Feminino , Mosquitos Vetores/virologia , Ovário/virologia , Sequenciamento Completo do Genoma
20.
Malar J ; 9: 112, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20416089

RESUMO

BACKGROUND: Plasmodium vivax and Plasmodium falciparum are the major causative agents of malaria. While knowledge of the genetic structure of malaria parasites is useful for understanding the evolution of parasite virulence, designing anti-malarial vaccines and assessing the impact of malaria control measures, there is a paucity of information on genetic diversity of these two malaria parasites in Pakistan. This study sought to shed some light on the genetic structure of P. vivax and P. falciparum in this understudied region. METHODS: The genetic diversities of P. vivax and P. falciparum populations from the densely populated, malaria-endemic Bannu district of Pakistan were evaluated by analysis of their merozoite surface protein (msp) genes by PCR-RFLP. Specifically, the Pvmsp-3alpha and Pvmsp-3beta genes of P. vivax and the Pfmsp-1 and Pfmsp-2 genes of P. falciparum were analysed. RESULTS: In P. vivax, genotyping of Pvmsp-3alpha and Pvmsp-3beta genes showed a high level of diversity at these loci. Four distinct allele groups: A (1.9 kb), B (1.5 kb), C (1.2 kb), and D (0.3 kb) were detected for Pvmsp-3alpha, type A being the most prevalent (82%). Conversely, amplification of the P. vivax msp-3beta locus produced two allele groups: A (1.7-2.2 kb, 62%) and B (1.4-1.5 kb, 33%), with 5% mixed-strain infections. Restriction analysis of Pvmsp-3alpha and Pvmsp-3beta yielded 12 and 8 distinct alleles, respectively, with a combined mixed genotype prevalence of 20%. In P. falciparum, all three known genotypes of Pfmsp-1 and two of Pfmsp-2 were observed, with MAD20 occurring in 67% and 3D7/IC in 65% of the isolates, respectively. Overall, 24% P. falciparum samples exhibited mixed-strain infections. CONCLUSION: These results indicate that both P. vivax and P. falciparum populations in Pakistan are highly diverse.


Assuntos
Variação Genética , Plasmodium falciparum/genética , Plasmodium vivax/genética , Antígenos de Protozoários/genética , Estruturas Genéticas , Genótipo , Humanos , Proteína 1 de Superfície de Merozoito/genética , Paquistão , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Proteínas de Protozoários/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA