Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 245, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030497

RESUMO

BACKGROUND: Inference of Gene Regulatory Networks (GRNs) is a difficult and long-standing question in Systems Biology. Numerous approaches have been proposed with the latest methods exploring the richness of single-cell data. One of the current difficulties lies in the fact that many methods of GRN inference do not result in one proposed GRN but in a collection of plausible networks that need to be further refined. In this work, we present a Design of Experiment strategy to use as a second stage after the inference process. It is specifically fitted for identifying the next most informative experiment to perform for deciding between multiple network topologies, in the case where proposed GRNs are executable models. This strategy first performs a topological analysis to reduce the number of perturbations that need to be tested, then predicts the outcome of the retained perturbations by simulation of the GRNs and finally compares predictions with novel experimental data. RESULTS: We apply this method to the results of our divide-and-conquer algorithm called WASABI, adapt its gene expression model to produce perturbations and compare our predictions with experimental results. We show that our networks were able to produce in silico predictions on the outcome of a gene knock-out, which were qualitatively validated for 48 out of 49 genes. Finally, we eliminate as many as two thirds of the candidate networks for which we could identify an incorrect topology, thus greatly improving the accuracy of our predictions. CONCLUSION: These results both confirm the inference accuracy of WASABI and show how executable gene expression models can be leveraged to further refine the topology of inferred GRNs. We hope this strategy will help systems biologists further explore their data and encourage the development of more executable GRN models.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Biologia de Sistemas/métodos , Biologia Computacional/métodos , Simulação por Computador , Modelos Genéticos
2.
BMC Biol ; 20(1): 155, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794592

RESUMO

BACKGROUND: According to Waddington's epigenetic landscape concept, the differentiation process can be illustrated by a cell akin to a ball rolling down from the top of a hill (proliferation state) and crossing furrows before stopping in basins or "attractor states" to reach its stable differentiated state. However, it is now clear that some committed cells can retain a certain degree of plasticity and reacquire phenotypical characteristics of a more pluripotent cell state. In line with this dynamic model, we have previously shown that differentiating cells (chicken erythrocytic progenitors (T2EC)) retain for 24 h the ability to self-renew when transferred back in self-renewal conditions. Despite those intriguing and promising results, the underlying molecular state of those "reverting" cells remains unexplored. The aim of the present study was therefore to molecularly characterize the T2EC reversion process by combining advanced statistical tools to make the most of single-cell transcriptomic data. For this purpose, T2EC, initially maintained in a self-renewal medium (0H), were induced to differentiate for 24H (24H differentiating cells); then, a part of these cells was transferred back to the self-renewal medium (48H reverting cells) and the other part was maintained in the differentiation medium for another 24H (48H differentiating cells). For each time point, cell transcriptomes were generated using scRT-qPCR and scRNAseq. RESULTS: Our results showed a strong overlap between 0H and 48H reverting cells when applying dimensional reduction. Moreover, the statistical comparison of cell distributions and differential expression analysis indicated no significant differences between these two cell groups. Interestingly, gene pattern distributions highlighted that, while 48H reverting cells have gene expression pattern more similar to 0H cells, they are not completely identical, which suggest that for some genes a longer delay may be required for the cells to fully recover. Finally, sparse PLS (sparse partial least square) analysis showed that only the expression of 3 genes discriminates 48H reverting and 0H cells. CONCLUSIONS: Altogether, we show that reverting cells return to an earlier molecular state almost identical to undifferentiated cells and demonstrate a previously undocumented physiological and molecular plasticity during the differentiation process, which most likely results from the dynamic behavior of the underlying molecular network.


Assuntos
Transcriptoma , Diferenciação Celular/genética
3.
BMC Bioinformatics ; 20(1): 220, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046682

RESUMO

BACKGROUND: Inference of gene regulatory networks from gene expression data has been a long-standing and notoriously difficult task in systems biology. Recently, single-cell transcriptomic data have been massively used for gene regulatory network inference, with both successes and limitations. RESULTS: In the present work we propose an iterative algorithm called WASABI, dedicated to inferring a causal dynamical network from time-stamped single-cell data, which tackles some of the limitations associated with current approaches. We first introduce the concept of waves, which posits that the information provided by an external stimulus will affect genes one-by-one through a cascade, like waves spreading through a network. This concept allows us to infer the network one gene at a time, after genes have been ordered regarding their time of regulation. We then demonstrate the ability of WASABI to correctly infer small networks, which have been simulated in silico using a mechanistic model consisting of coupled piecewise-deterministic Markov processes for the proper description of gene expression at the single-cell level. We finally apply WASABI on in vitro generated data on an avian model of erythroid differentiation. The structure of the resulting gene regulatory network sheds a new light on the molecular mechanisms controlling this process. In particular, we find no evidence for hub genes and a much more distributed network structure than expected. Interestingly, we find that a majority of genes are under the direct control of the differentiation-inducing stimulus. CONCLUSIONS: Together, these results demonstrate WASABI versatility and ability to tackle some general gene regulatory networks inference issues. It is our hope that WASABI will prove useful in helping biologists to fully exploit the power of time-stamped single-cell data.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Diferenciação Celular/genética , Simulação por Computador , Células Eritroides/metabolismo , Cadeias de Markov , Análise de Célula Única , Biologia de Sistemas/métodos
4.
iScience ; 25(9): 104927, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36065187

RESUMO

In this work, we studied the generation of memory precursor cells following an acute infection by analyzing single-cell RNA-seq data that contained CD8 T cells collected during the postinfection expansion phase. We used different tools to reconstruct the developmental trajectory that CD8 T cells followed after activation. Cells that exhibited a memory precursor signature were identified and positioned on this trajectory. We found that these memory precursors are generated continuously with increasing numbers arising over time. Similarly, expression of genes associated with effector functions was also found to be raised in memory precursors at later time points. The ability of cells to enter quiescence and differentiate into memory cells was confirmed by BrdU pulse-chase experiment in vivo. Analysis of cell counts indicates that the vast majority of memory cells are generated at later time points from cells that have extensively divided.

5.
BMC Syst Biol ; 11(1): 105, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157246

RESUMO

BACKGROUND: The recent development of single-cell transcriptomics has enabled gene expression to be measured in individual cells instead of being population-averaged. Despite this considerable precision improvement, inferring regulatory networks remains challenging because stochasticity now proves to play a fundamental role in gene expression. In particular, mRNA synthesis is now acknowledged to occur in a highly bursty manner. RESULTS: We propose to view the inference problem as a fitting procedure for a mechanistic gene network model that is inherently stochastic and takes not only protein, but also mRNA levels into account. We first explain how to build and simulate this network model based upon the coupling of genes that are described as piecewise-deterministic Markov processes. Our model is modular and can be used to implement various biochemical hypotheses including causal interactions between genes. However, a naive fitting procedure would be intractable. By performing a relevant approximation of the stationary distribution, we derive a tractable procedure that corresponds to a statistical hidden Markov model with interpretable parameters. This approximation turns out to be extremely close to the theoretical distribution in the case of a simple toggle-switch, and we show that it can indeed fit real single-cell data. As a first step toward inference, our approach was applied to a number of simple two-gene networks simulated in silico from the mechanistic model and satisfactorily recovered the original networks. CONCLUSIONS: Our results demonstrate that functional interactions between genes can be inferred from the distribution of a mechanistic, dynamical stochastic model that is able to describe gene expression in individual cells. This approach seems promising in relation to the current explosion of single-cell expression data.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Análise de Célula Única , Cadeias de Markov , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA