Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Aerosol Sci ; 115: 133-145, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32287370

RESUMO

Respiratory viral diseases can be spread when a virus-containing particle (droplet) from one individual is aerosolized and subsequently comes into either direct or indirect contact with another individual. Increasing numbers of studies are examining the occupational risk to healthcare workers due to proximity to patients. Selecting the appropriate air sampling method is a critical factor in assuring the analytical performance characteristics of a clinical study. The objective of this study was to compare the physical collection efficiency and virus collection efficiency of a 5 mL compact SKC BioSampler®, a gelatin filter, and a glass fiber filter, in a laboratory setting. The gelatin filter and the glass fiber filter were housed in a home-made filter holder. Submersion (with vortexing and subsequent centrifugation) was used for the gelatin and glass fiber filters. Swabbing method was also tested to retrieve the viruses from the glass fiber filter. Experiments were conducted using the H1N1 influenza A virus A/Puerto Rico/8/1934 (IAV-PR8), and viral recovery was determined using culture and commercial real-time-PCR (BioFire and Xpert). An atomizer was used to aerosolize a solution of influenza virus in PBS for measurement, and two Scanning Mobility Particle Sizers were used to determine particle size distributions. The SKC BioSampler demonstrated a U-shaped physical collection efficiency, lowest for particles around 30-50 nm, and highest at 10 nm and 300-350 nm within the size range examined. The physical collection efficiency of the gelatin filter was strongly influenced by air flow and time: a stable collection across all particle sizes was only observed at 2 L/min for the 9 min sampling time, otherwise, degradation of the filter was observed. The glass fiber filter demonstrated the highest physical collection efficiency (100% for all sizes) of all tested samplers, however, its overall virus recovery efficiency fared the worst (too low to quantify). The highest viral collection efficiencies for the SKC BioSampler and gelatin filter were 5% and 1.5%, respectively. Overall, the SKC BioSampler outperformed the filters. It is important to consider the total concentration of viruses entering the sampler when interpreting the results.

2.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993345

RESUMO

The stem-loop II motif (s2m) is a RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over twenty-five years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also compared the secondary structure of the 3' UTR of wild type and s2m deletion viruses using SHAPE-MaP and DMS-MaPseq. These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE: RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contain functional structures to support virus replication, translation and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is a RNA structural element that is found in many RNA viruses. This motif was discovered over twenty-five years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that the s2m is dispensable for SARS-CoV-2.

3.
bioRxiv ; 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35547847

RESUMO

The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA