Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 522(7557): 482-6, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25874673

RESUMO

Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras(V12)/scrib(-/-) tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores do Fator de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/genética , Moléculas de Adesão Celular/metabolismo , Divisão Celular/genética , Polaridade Celular/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Dados de Sequência Molecular , Invasividade Neoplásica/genética , Neoplasias/enzimologia , Neoplasias/genética , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Proteínas ras/genética , Proteínas ras/metabolismo
2.
Dev Cell ; 49(5): 811-818.e4, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31006647

RESUMO

How organs scale with other body parts is not mechanistically understood. We have addressed this question using the Drosophila imaginal disc model. When the growth of one disc domain is perturbed, other parts of the disc and other discs slow down their growth, maintaining proper inter-disc and intra-disc proportions. We show here that the relaxin-like Dilp8 is required for this inter-organ coordination. Our work also reveals that the stress-response transcription factor Xrp1 plays a key role upstream of dilp8 in linking organ growth status with the systemic growth response. In addition, we show that the small ribosomal subunit protein RpS12 is required to trigger Xrp1-dependent non-autonomous response. Our work demonstrates that RpS12, Xrp1, and Dilp8 form an independent regulatory module that ensures intra- and inter-organ growth coordination during development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas Serina-Treonina Quinases/genética , Proteínas Ribossômicas/genética , Transdução de Sinais
3.
Med Sci (Paris) ; 33(6-7): 637-641, 2017.
Artigo em Francês | MEDLINE | ID: mdl-28990566

RESUMO

Body size is an intrinsic property of living organisms that is intimately linked to the developmental program to produce fit individuals with proper proportions. Final size is the result of both genetic determinants and sophisticated mechanisms adapting size to available resources. Even though organs grow according to autonomous programs, some coordination mechanisms ensure that the different body parts adjust their growth with the rest of the body. In Drosophila, Dilp8, a hormone of the Insulin/Relaxin family is a key player in this inter-organs coordination and is required together with its receptor Lgr3 to limit developmental variability. Recently, the transcriptional co-activator Yki (homologue of YAP/TAZ factors in mammals) was shown to regulate dilp8 expression and contribute to the coordination of organ growth in Drosophila.


Assuntos
Crescimento e Desenvolvimento , Insulinas/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/farmacologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/genética , Humanos , Insulinas/genética , Insulinas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transdução de Sinais/efeitos dos fármacos
4.
Nat Commun ; 7: 13505, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874005

RESUMO

Coordination of organ growth during development is required to generate fit individuals with fixed proportions. We recently identified Drosophila Dilp8 as a key hormone in coupling organ growth with animal maturation. In addition, dilp8 mutant flies exhibit elevated fluctuating asymmetry (FA) demonstrating a function for Dilp8 in ensuring developmental stability. The signals regulating Dilp8 activity during normal development are not yet known. Here, we show that the transcriptional co-activators of the Hippo (Hpo) pathway, Yorkie (Yki, YAP/TAZ) and its DNA-binding partner Scalloped (Sd), directly regulate dilp8 expression through a Hpo-responsive element (HRE) in the dilp8 promoter. We further demonstrate that mutation of the HRE by genome-editing results in animals with increased FA, thereby mimicking full dilp8 loss of function. Therefore, our results indicate that growth coordination of organs is connected to their growth status through a feedback loop involving Hpo and Dilp8 signalling pathways.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Deleção de Genes , Edição de Genes , Genótipo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
5.
Curr Biol ; 25(20): 2723-9, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26441350

RESUMO

Early transplantation and grafting experiments suggest that body organs follow autonomous growth programs [1-3], therefore pointing to a need for coordination mechanisms to produce fit individuals with proper proportions. We recently identified Drosophila insulin-like peptide 8 (Dilp8) as a relaxin and insulin-like molecule secreted from growing tissues that plays a central role in coordinating growth between organs and coupling organ growth with animal maturation [4, 5]. Deciphering the function of Dilp8 in growth coordination relies on the identification of the receptor and tissues relaying Dilp8 signaling. We show here that the orphan receptor leucine-rich repeat-containing G protein-coupled receptor 3 (Lgr3), a member of the highly conserved family of relaxin family peptide receptors (RXFPs), mediates the checkpoint function of Dilp8 for entry into maturation. We functionally identify two Lgr3-positive neurons in each brain lobe that are required to induce a developmental delay upon overexpression of Dilp8. These neurons are located in the pars intercerebralis, an important neuroendocrine area in the brain, and make physical contacts with the PTTH neurons that ultimately control the production and release of the molting steroid ecdysone. Reducing Lgr3 levels in these neurons results in adult flies exhibiting increased fluctuating bilateral asymmetry, therefore recapitulating the phenotype of dilp8 mutants. Our work reveals a novel Dilp8/Lgr3 neuronal circuitry involved in a feedback mechanism that ensures coordination between organ growth and developmental transitions and prevents developmental variability.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Receptores Acoplados a Proteínas G/genética , Animais , Encéfalo/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Neurônios/metabolismo , Tamanho do Órgão , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
6.
Dev Psychobiol ; 42(2): 206-22, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12555284

RESUMO

Sensory and temporal factors have been demonstrated to be involved in the regulation of isolation-induced ultrasonic vocalizations (USV) of young rats. Sensory cues include thermal, olfactory, and tactile modalities. Temporal factors include the time spent in isolation. The goal of the present research was to examine the interaction of these factors in both isolation-induced and maternally potentiated USV. Maternal potentiation of USV occurs when a brief interaction with the dam, even a passive (anesthetized) dam, elicits an augmented vocal response to a subsequent isolation, with rates of USV in rat pups well above those emitted in standard isolation tests. We found that passive maternal potentiation of USV did occur under all conditions tested. Neither a 30-min prior isolation nor high ambient temperature prevented an increase in USV rate over the rate of the original isolation. After 30-min isolation at warm temperatures when the rate of USV had fallen to zero, the pups increased vocalization in the presence of the dam as well as in the subsequent isolation. Temporal and thermal factors also interacted significantly in regulating the level of the USV emitted by the pups during the first isolation, in the presence of the anesthetized dam, and during the second isolation.


Assuntos
Nível de Alerta , Temperatura Corporal , Comportamento Materno , Privação Materna , Isolamento Social , Vocalização Animal , Animais , Animais Recém-Nascidos , Feminino , Manobra Psicológica , Masculino , Ratos , Ratos Wistar , Espectrografia do Som , Fatores de Tempo , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA