Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Biochem Soc Trans ; 50(1): 555-567, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35212365

RESUMO

Membrane proteins need to fold with precision in order to function correctly, with misfolding potentially leading to disease. The proteins reside within a hydrophobic lipid membrane and must insert into the membrane and fold correctly, generally whilst they are being translated by the ribosome. Favourable and unfavourable free energy contributions are present throughout each stage of insertion and folding. The unfavourable energy cost of transferring peptide bonds into the hydrophobic membrane interior is compensated for by the favourable hydrophobic effect of partitioning a hydrophobic transmembrane alpha-helix into the membrane. Native membranes are composed of many different types of lipids, but how these different lipids influence folding and the associated free energies is not well understood. Altering the lipids in the bilayer is known to affect the probability of transmembrane helix insertion into the membrane, and lipids also affect protein stability and can promote successful folding. This review will summarise the free energy contributions associated with insertion and folding of alpha helical membrane proteins, as well as how lipids can make these processes more or less favourable. We will also discuss the implications of this work for the free energy landscape during the co-translational folding of alpha helical membrane proteins.


Assuntos
Proteínas de Membrana , Dobramento de Proteína , Bicamadas Lipídicas/química , Lipídeos/química , Proteínas de Membrana/metabolismo , Conformação Proteica em alfa-Hélice , Ribossomos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(34): 16711-16716, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371493

RESUMO

To date, reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here, we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle-cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multicompartment-spanning designer pathways that can be utilized to control downstream events inside an AC, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.


Assuntos
Células Artificiais , Compartimento Celular , Mecanotransdução Celular , Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Compartimento Celular/efeitos dos fármacos , Quelantes/farmacologia , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Fosfolipases A2/metabolismo
3.
Biophys J ; 120(17): 3787-3794, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34273316

RESUMO

Cellular life relies on membranes, which provide a resilient and adaptive cell boundary. Many essential processes depend upon the ease with which the membrane is able to deform and bend, features that can be characterized by the bending rigidity. Quantitative investigations of such mechanical properties of biological membranes have primarily been undertaken in solely lipid bilayers and frequently in the absence of buffers. In contrast, much less is known about the influence of integral membrane proteins on bending rigidity under physiological conditions. We focus on an exemplar member of the ubiquitous major facilitator superfamily of transporters and assess the influence of lactose permease on the bending rigidity of lipid bilayers. Fluctuation analysis of giant unilamellar vesicles (GUVs) is a useful means to measure bending rigidity. We find that using a hydrogel substrate produces GUVs that are well suited to fluctuation analysis. Moreover, the hydrogel method is amenable to both physiological salt concentrations and anionic lipids, which are important to mimic key aspects of the native lactose permease membrane. Varying the fraction of the anionic lipid in the lipid mixture DOPC/DOPE/DOPG allows us to assess the dependence of membrane bending rigidity on the topology and concentration of an integral membrane protein in the lipid bilayer of GUVs. The bending rigidity gradually increases with the incorporation of lactose permease, but there is no further increase with greater amounts of the protein in the membrane.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Proteínas de Membrana Transportadoras , Lipossomas Unilamelares
4.
Biochemistry ; 59(30): 2764-2775, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32627541

RESUMO

Co-translational folding studies of membrane proteins lag behind cytosolic protein investigations largely due to the technical difficulty in maintaining membrane lipid environments for correct protein folding. Stalled ribosome-bound nascent chain complexes (RNCs) can give snapshots of a nascent protein chain as it emerges from the ribosome during biosynthesis. Here, we demonstrate how SecM-facilitated nascent chain stalling and native nanodisc technologies can be exploited to capture in vivo-generated membrane protein RNCs within their native lipid compositions. We reveal that a polytopic membrane protein can be successfully stalled at various stages during its synthesis and the resulting RNC extracted within either detergent micelles or diisobutylene-maleic acid co-polymer native nanodiscs. Our approaches offer tractable solutions for the structural and biophysical interrogation of nascent membrane proteins of specified lengths, as the elongating nascent chain emerges from the ribosome and inserts into its native lipid milieu.


Assuntos
Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Alcenos/química , Sequência de Aminoácidos , Maleatos/química , Micelas , Nanopartículas/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas/química , Canais de Translocação SEC/metabolismo
5.
Nucleic Acids Res ; 45(20): 12025-12038, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149348

RESUMO

The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical data, we investigate the oligomeric formation of HerA and detail the mechanism of nucleotide binding to the HerA-NurA complex from thermophilic archaea. We reveal that ATP-free HerA and HerA-DNA complexes predominantly exist in solution as a heptamer and act as a DNA loading intermediate. The binding of either NurA or ATP stabilizes the hexameric HerA, indicating that HerA-NurA is activated by substrates and complex assembly. To examine the role of ATP in DNA translocation and processing, we investigated how nucleotides interact with the HerA-NurA. We show that while the hexameric HerA binds six nucleotides in an 'all-or-none' fashion, HerA-NurA harbors a highly coordinated pairwise binding mechanism and enables the translocation and processing of double-stranded DNA. Using molecular dynamics simulations, we reveal novel inter-residue interactions between the external ATP and the internal DNA binding sites. Overall, here we propose a stepwise assembly mechanism detailing the synergistic activation of HerA-NurA by ATP, which allows efficient processing of double-stranded DNA.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , DNA Arqueal/metabolismo , Desoxirribonucleases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/química , DNA Helicases/genética , Reparo do DNA , DNA Arqueal/química , DNA Arqueal/genética , Desoxirribonucleases/química , Desoxirribonucleases/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Sulfolobus solfataricus/enzimologia , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
7.
Biochem Soc Trans ; 46(5): 1355-1366, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30190329

RESUMO

Membrane proteins must be inserted into a membrane and folded into their correct structure to function correctly. This insertion occurs during translation and synthesis by the ribosome for most α-helical membrane proteins. Precisely how this co-translational insertion and folding occurs, and the role played by the surrounding lipids, is still not understood. Most of the work on the influence of the lipid environment on folding and insertion has focussed on denatured, fully translated proteins, and thus does not replicate folding during unidirectional elongation of nascent chains that occurs in the cell. This review aims to highlight recent advances in elucidating lipid composition and bilayer properties optimal for insertion and folding of nascent chains in the membrane and in the assembly of oligomeric proteins.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Bacillus subtilis , Sistema Livre de Células , Escherichia coli/metabolismo , Modelos Moleculares , Biossíntese de Proteínas , Conformação Proteica , Estrutura Secundária de Proteína , Ribossomos/metabolismo
8.
Biochemistry ; 56(25): 3225-3233, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28493669

RESUMO

The propensity to misfold and self-assemble into stable aggregates is increasingly being recognized as a common feature of protein molecules. Our understanding of this phenomenon and of its links with human disease has improved substantially over the past two decades. Studies thus far, however, have been almost exclusively focused on cytosolic proteins, resulting in a lack of detailed information about the misfolding and aggregation of membrane proteins. As a consequence, although such proteins make up approximately 30% of the human proteome and have high propensities to aggregate, relatively little is known about the biophysical nature of their assemblies. To shed light on this issue, we have studied as a model system an archetypical representative of the ubiquitous major facilitator superfamily, the Escherichia coli lactose permease (LacY). By using a combination of established indicators of cross-ß structure and morphology, including the amyloid diagnostic dye thioflavin-T, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, X-ray fiber diffraction, and transmission electron microscopy, we show that LacY can form amyloid-like fibrils under destabilizing conditions. These results indicate that transmembrane α-helical proteins, similarly to cytosolic proteins, have the ability to adopt this generic state.


Assuntos
Amiloide/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Transporte de Monossacarídeos/química , Simportadores/química , Tiazóis/química , Benzotiazóis , Dicroísmo Circular , Humanos , Microscopia Eletrônica de Transmissão , Conformação Proteica em alfa-Hélice , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Eur Biophys J ; 46(7): 655-663, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28116476

RESUMO

Membrane transporters are a vital class of proteins for which there is little available structural and thermodynamic information. The Major Facilitator Superfamily (MFS) is a large group of transport proteins responsible for transporting a wide range of substrates in eukaryotes and prokaryotes. We have used far-UV circular dichroism (CD) to assess whether transporters from this superfamily have the same chemical and thermal stability. We have compared the stability of five different MFS transporters; PepTSo from Shewanella oneidensis and LacY, GalP, GlpT and XylE from Escherichia coli, as well as a known stable mutant of LacY, LacY-C154G. CD stability measurements revealed that these transporters fall into two broad categories. The 'urea-sensitive' category includes LacY-WT, GalP and GlpT, which each lose around a third of their secondary structure in 8 M urea and two-thirds in the harsher denaturant guanidine hydrochloride (GuHCl). The 'urea-resistant' category includes LacY-C154G, XylE and PepTSo. These resistant transporters lose very little secondary structure in 8 M urea, and LacY-C154G and PepTSo resist denaturation by GuHCl up to a concentration of 4 M. The stabilities of LacY, GlpT, XylE and PepTSo correlated with their crystal structure conformations, implying that a similar conformation is adopted in vitro. The 'urea-sensitive' transporters LacY and GlpT were crystallised inward-open states, while XylE and PepTSo were crystallised in occluded states. This study highlights the importance of studying a wide range of similar proteins, as a similar secondary structure and overall function does not necessarily confer the same stability in vitro.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Guanidina/farmacologia , Ligantes , Modelos Moleculares , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Desdobramento de Proteína/efeitos dos fármacos , Ureia/farmacologia
10.
Angew Chem Int Ed Engl ; 56(49): 15654-15657, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29049865

RESUMO

The interplay between membrane proteins and the lipids of the membrane is important for cellular function, however, tools enabling the interrogation of protein dynamics within native lipid environments are scarce and often invasive. We show that the styrene-maleic acid lipid particle (SMALP) technology can be coupled with hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate membrane protein conformational dynamics within native lipid bilayers. We demonstrate changes in accessibility and dynamics of the rhomboid protease GlpG, captured within three different native lipid compositions, and identify protein regions sensitive to changes in the native lipid environment. Our results illuminate the value of this approach for distinguishing the putative role(s) of the native lipid composition in modulating membrane protein conformational dynamics.


Assuntos
Lipídeos/química , Proteínas de Membrana/metabolismo , Proteínas de Ligação a DNA/metabolismo , Medição da Troca de Deutério , Endopeptidases/metabolismo , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas , Proteínas de Membrana/química , Conformação Proteica
11.
Nanotechnology ; 27(49): 494004, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27831930

RESUMO

Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.


Assuntos
Membrana Celular , Bicamadas Lipídicas , Proteínas de Membrana , Dobramento de Proteína
12.
Bioconjug Chem ; 26(3): 427-34, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25603321

RESUMO

DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas de Bactérias/química , DNA/química , DNA de Cadeia Simples/química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química
13.
Proc Natl Acad Sci U S A ; 108(34): 14133-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21831834

RESUMO

Defining the structural features of a transition state is important in understanding a folding reaction. Here, we use Φ-value and double mutant analyses to probe the folding transition state of the membrane protein bacteriorhodopsin. We focus on the final C-terminal helix, helix G, of this seven transmembrane helical protein. Φ-values could be derived for 12 amino acid residues in helix G, most of which have low or intermediate values, suggesting that native structure is disrupted at these amino acid positions in the transition state. Notably, a cluster of residues between E204 and M209 all have Φ-values close to zero. Disruption of helix G is further confirmed by a low Φ-value of 0.2 between residues T170 on helix F and S226 on helix G, suggesting the absence of a native hydrogen bond between helices F and G. Φ-values for paired mutations involved in four interhelical hydrogen bonds revealed that all but one of these bonds is absent in the transition state. The unstructured helix G contrasts with Φ-values along helix B that are generally high, implying native structure in helix B in the transition state. Thus helix B seems to constitute part of a stable folding nucleus while the consolidation of helix G is a relatively late folding event. Polarization of secondary structure correlates with sequence position, with a structured helix B near the N terminus contrasting with an unstructured C-terminal helix G.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/química , Dobramento de Proteína , Alanina/genética , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese/genética , Mutação/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína
14.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915626

RESUMO

Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are a major driver of multidrug resistance among Gram-negative bacteria. The periplasm provides a distinct environment between the inner and outer membranes of Gram-negative bacteria. Cations, such as Mg2+, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg2+ and pH in modulating the dynamics of the periplasmic adaptor protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug efflux pump from Escherichia coli. In the absence of Mg2+, AcrA becomes increasingly plastic within acidic conditions, but when Mg2+ is bound this is ameliorated, resulting in domain specific organisation in neutral to weakly acidic regimes. We establish a unique histidine residue directs these structural dynamics and is essential for sustaining pump efflux activity across acidic, neutral, and alkaline conditions. Overall, we propose Mg2+ conserves the structural mobility of AcrA to ensure optimal AcrAB-TolC function within rapid changing environments commonly faced by the periplasm during bacterial infection and colonization. This work highlights that Mg2+ is an important mechanistic component in this pump class and possibly across other periplasmic lipoproteins.

15.
Biochim Biophys Acta ; 1818(4): 1055-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22100867

RESUMO

Transmembrane transporters are responsible for maintaining a correct internal cellular environment. The inherent flexibility of transporters together with their hydrophobic environment means that they are challenging to study in vitro, but recently significant progress been made. This review will focus on in vitro stability and folding studies of transmembrane alpha helical transporters, including reversible folding systems and thermal denaturation. The successful re-assembly of a small number of ATP binding cassette transporters is also described as this is a significant step forward in terms of understanding the folding and assembly of these more complex, multi-subunit proteins. The studies on transporters discussed here represent substantial advances for membrane protein studies as well as for research into protein folding. The work demonstrates that large flexible hydrophobic proteins are within reach of in vitro folding studies, thus holding promise for furthering knowledge on the structure, function and biogenesis of ubiquitous membrane transporter families. This article is part of a Special Issue entitled: Protein Folding in Membranes.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dobramento de Proteína , Modelos Biológicos , Desnaturação Proteica , Redobramento de Proteína , Estabilidade Proteica
16.
Nat Chem Biol ; 7(12): 935-41, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037471

RESUMO

The design of new proteins that expand the repertoire of natural protein structures represents a formidable challenge. Success in this area would increase understanding of protein structure and present new scaffolds that could be exploited in biotechnology and synthetic biology. Here we describe the design, characterization and X-ray crystal structure of a new coiled-coil protein. The de novo sequence forms a stand-alone, parallel, six-helix bundle with a channel running through it. Although lined exclusively by hydrophobic leucine and isoleucine side chains, the 6-Å channel is permeable to water. One layer of leucine residues within the channel is mutable, accepting polar aspartic acid and histidine side chains, which leads to subdivision and organization of solvent within the lumen. Moreover, these mutants can be combined to form a stable and unique (Asp-His)(3) heterohexamer. These new structures provide a basis for engineering de novo proteins with new functions.


Assuntos
Oligopeptídeos/química , Biologia Sintética , Ácido Aspártico/química , Cristalografia por Raios X , Histidina/química , Modelos Moleculares , Oligopeptídeos/síntese química , Conformação Proteica , Engenharia de Proteínas
17.
Proc Natl Acad Sci U S A ; 107(43): 18451-6, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937906

RESUMO

Understanding how an amino acid sequence folds into a functional, three-dimensional structure has proved to be a formidable challenge in biological research, especially for transmembrane proteins with multiple alpha helical domains. Mechanistic folding studies on helical membrane proteins have been limited to unusually stable, single domain proteins such as bacteriorhodopsin. Here, we extend such work to flexible, multidomain proteins and one of the most widespread membrane transporter families, the major facilitator superfamily, thus showing that more complex membrane proteins can be successfully refolded to recover native substrate binding. We determine the unfolding free energy of the two-domain, Escherichia coli galactose transporter, GalP; a bacterial homologue of human glucose transporters. GalP is reversibly unfolded by urea. Urea causes loss of substrate binding and a significant reduction in alpha helical content. Full recovery of helical structure and substrate binding occurs in dodecylmaltoside micelles, and the unfolding free energy can be determined. A linear dependence of this free energy on urea concentration allows the free energy of unfolding in the absence of urea to be determined as +2.5 kcal·mol(-1). Urea has often been found to be a poor denaturant for transmembrane helical structures. We attribute the denaturation of GalP helices by urea to the dynamic nature of the transporter structure allowing denaturant access via the substrate binding pocket, as well as to helical structure that extends beyond the membrane. This study gives insight into the final, critical folding step involving recovery of ligand binding for a multidomain membrane transporter.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Escherichia coli/química , Proteínas de Transporte de Monossacarídeos/química , Proteínas Periplásmicas de Ligação/química , Proteínas de Ligação ao Cálcio/metabolismo , Dicroísmo Circular , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Termodinâmica , Resposta a Proteínas não Dobradas , Lipossomas Unilamelares , Ureia
18.
Biochemistry ; 51(18): 3776-85, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22530967

RESUMO

The synthesis and manipulation of silicon materials on the nanoscale are core themes in nanotechnology research. Inspiration is increasingly being taken from the natural world because the biological mineralization of silicon results in precisely controlled, complex silica structures with dimensions from the millimeter to the nanometer. One fascinating example of silicon biomineralization occurs in the diatoms, unicellular algae that sheath themselves in an ornate silica-based cell wall. To harvest silicon from the environment, diatoms have developed a unique family of integral membrane proteins that bind to a soluble form of silica, silicic acid, and transport it across the cell membrane to the cell interior. These are the first proteins shown to directly interact with silicon, but the current understanding of these specific silicon transport proteins is limited by the lack of in vitro studies of structure and function. We report here the recombinant expression, purification, and reconstitution of a silicon transporter from the model diatom Thalassiosira pseudonana. After using GFP fusions to optimize expression and purification protocols, a His(10)-tagged construct was expressed in Saccharomyces cerevisiae, solubilized in the detergent Fos-choline-12, and purified by affinity chromatography. Size-exclusion chromatography and particle sizing by dynamic light scattering showed that the protein was purified as a homotetramer, although nonspecific oligomerization occurred at high protein concentrations. Circular dichroism measurements confirmed sequence-based predictions that silicon transporters are α-helical membrane proteins. Silicic acid transport could be established in reconstituted proteoliposomes, and silicon uptake was found to be dependent upon an applied sodium gradient. Transport data across different substrate concentrations were best fit to the sigmoidal Hill equation, with a K(0.5) of 19.4 ± 1.3 µM and a cooperativity coefficient of 1.6. Sodium binding was noncooperative with a K(m)(app) of 1.7 ± 1.0 mM, suggesting a transport silicic acid:Na(+) stoichiometry of 2:1. These results provide the basis for a full understanding of both silicon transport in the diatom and protein-silicon interactions in general.


Assuntos
Diatomáceas/química , Proteínas de Membrana Transportadoras/metabolismo , Ácido Silícico/metabolismo , Transporte Biológico , Parede Celular/química , Detergentes/farmacologia , Proteínas de Membrana Transportadoras/isolamento & purificação , Nanotecnologia/métodos , Proteolipídeos/efeitos dos fármacos , Proteolipídeos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Silício/metabolismo , Solubilidade
19.
J Biol Chem ; 286(21): 18807-15, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21345797

RESUMO

Studies on membrane protein folding have focused on monomeric α-helical proteins and a major challenge is to extend this work to larger oligomeric membrane proteins. Here, we study the Escherichia coli (E. coli) ATP-binding cassette (ABC) transporter that imports vitamin B(12) (the BtuCD protein) and use it as a model system for investigating the folding and assembly of a tetrameric membrane protein complex. Our work takes advantage of the modular organization of BtuCD, which consists of two transmembrane protein subunits, BtuC, and two cytoplasmically located nucleotide-binding protein subunits, BtuD. We show that the BtuCD transporter can be re-assembled from both prefolded and partly unfolded, urea denatured BtuC and BtuD subunits. The in vitro re-assembly leads to a BtuCD complex with the correct, native, BtuC and BtuD subunit stoichiometry. The highest rates of ATP hydrolysis were achieved for BtuCD re-assembled from partly unfolded subunits. This supports the idea of cooperative folding and assembly of the constituent protein subunits of the BtuCD transporter. BtuCD folding also provides an opportunity to investigate how a protein that contains both membrane-bound and aqueous subunits coordinates the folding requirements of the hydrophobic and hydrophilic subunits.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Dobramento de Proteína , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Domínio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Desnaturação Proteica , Ureia/química
20.
J Am Chem Soc ; 134(13): 5746-9, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22428921

RESUMO

Mechanical properties of biological membranes are known to regulate membrane protein function. Despite this, current models of protein communication typically feature only direct protein-protein or protein-small molecule interactions. Here we show for the first time that, by harnessing nanoscale mechanical energy within biological membranes, it is possible to promote controlled communication between proteins. By coupling lipid-protein modules and matching their response to the mechanical properties of the membrane, we have shown that the action of phospholipase A(2) on acyl-based phospholipids triggers the opening of the mechanosensitive channel, MscL, by generating membrane asymmetry. Our findings confirm that the global physical properties of biological membranes can act as information pathways between proteins, a novel mechanism of membrane-mediated protein-protein communication that has important implications for (i) the underlying structure of signaling pathways, (ii) our understanding of in vivo communication networks, and (iii) the generation of building blocks for artificial protein networks.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Engenharia Genética/métodos , Canais Iônicos/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Fenômenos Biomecânicos , Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA