Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 37(17): 2770-2771, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33538793

RESUMO

SUMMARY: Many factors can influence results in clinical research, in particular bias in the distribution of samples prior to biochemical preparation. Well Plate Maker is a user-friendly application to design single- or multiple-well plate assays. It allows multiple group experiments to be randomized and therefore helps to reduce possible batch effects. Although primarily fathered to optimize the design of clinical sample analysis by high throughput mass spectrometry (e.g. proteomics or metabolomics), it includes multiple options to limit edge-of-plate effects, to incorporate control samples or to limit cross-contamination. It thus fits the constraints of many experimental fields. AVAILABILITY AND IMPLEMENTATION: Well Plate Maker is implemented in R and available at Bioconductor repository (https://bioconductor.org/packages/wpm) under the open source Artistic 2.0 license. In addition to classical scripting, it can be used through a graphical user interface, developed with Shiny technology.

2.
Bioinformatics ; 37(1): 89-96, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33416858

RESUMO

MOTIVATION: One avenue to address the paucity of clinically testable targets is to reinvestigate the druggable genome by tackling complicated types of targets such as Protein-Protein Interactions (PPIs). Given the challenge to target those interfaces with small chemical compounds, it has become clear that learning from successful examples of PPI modulation is a powerful strategy. Freely accessible databases of PPI modulators that provide the community with tractable chemical and pharmacological data, as well as powerful tools to query them, are therefore essential to stimulate new drug discovery projects on PPI targets. RESULTS: Here, we present the new version iPPI-DB, our manually curated database of PPI modulators. In this completely redesigned version of the database, we introduce a new web interface relying on crowdsourcing for the maintenance of the database. This interface was created to enable community contributions, whereby external experts can suggest new database entries. Moreover, the data model, the graphical interface, and the tools to query the database have been completely modernized and improved. We added new PPI modulators, new PPI targets and extended our focus to stabilizers of PPIs as well. AVAILABILITY AND IMPLEMENTATION: The iPPI-DB server is available at https://ippidb.pasteur.fr The source code for this server is available at https://gitlab.pasteur.fr/ippidb/ippidb-web/ and is distributed under GPL licence (http://www.gnu.org/licences/gpl). Queries can be shared through persistent links according to the FAIR data standards. Data can be downloaded from the website as csv files. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
J Proteome Res ; 18(1): 571-573, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394750

RESUMO

The term "spectral clustering" is sometimes used to refer to the clustering of mass spectrometry data. However, it also classically refers to a family of popular clustering algorithms. To avoid confusion, a more specific term could advantageously be coined.


Assuntos
Análise por Conglomerados , Espectrometria de Massas/métodos , Terminologia como Assunto , Algoritmos , Proteômica/métodos
4.
Biomark Res ; 12(1): 44, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679739

RESUMO

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated to affect 30% of the world's population, and its prevalence is increasing in line with obesity. Liver fibrosis is closely related to mortality, making it the most important clinical parameter for MASLD. It is currently assessed by liver biopsy - an invasive procedure that has some limitations. There is thus an urgent need for a reliable non-invasive means to diagnose earlier MASLD stages. METHODS: A discovery study was performed on 158 plasma samples from histologically-characterised MASLD patients using mass spectrometry (MS)-based quantitative proteomics. Differentially abundant proteins were selected for verification by ELISA in the same cohort. They were subsequently validated in an independent MASLD cohort (n = 200). RESULTS: From the 72 proteins differentially abundant between patients with early (F0-2) and advanced fibrosis (F3-4), we selected Insulin-like growth factor-binding protein complex acid labile subunit (ALS) and Galectin-3-binding protein (Gal-3BP) for further study. In our validation cohort, AUROCs with 95% CIs of 0.744 [0.673 - 0.816] and 0.735 [0.661 - 0.81] were obtained for ALS and Gal-3BP, respectively. Combining ALS and Gal-3BP improved the assessment of advanced liver fibrosis, giving an AUROC of 0.796 [0.731. 0.862]. The {ALS; Gal-3BP} model surpassed classic fibrosis panels in predicting advanced liver fibrosis. CONCLUSIONS: Further investigations with complementary cohorts will be needed to confirm the usefulness of ALS and Gal-3BP individually and in combination with other biomarkers for diagnosis of liver fibrosis. With the availability of ELISA assays, these findings could be rapidly clinically translated, providing direct benefits for patients.

5.
Methods Mol Biol ; 1959: 225-246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30852826

RESUMO

ProStaR is a software tool dedicated to differential analysis in label-free quantitative proteomics. Practically, once biological samples have been analyzed by bottom-up mass spectrometry-based proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, by means of precursor ion chromatogram integration. Then, it is classical to use these peptide-level pieces of information to derive the identity and quantity of the sample proteins before proceeding with refined statistical processing at protein-level, so as to bring out proteins which abundance is significantly different between different groups of samples. To achieve this statistical step, it is possible to rely on ProStaR, which allows the user to (1) load correctly formatted data, (2) clean them by means of various filters, (3) normalize the sample batches, (4) impute the missing values, (5) perform null hypothesis significance testing, (6) check the well-calibration of the resulting p-values, (7) select a subset of differentially abundant proteins according to some false discovery rate, and (8) contextualize these selected proteins into the Gene Ontology. This chapter provides a detailed protocol on how to perform these eight processing steps with ProStaR.


Assuntos
Biologia Computacional , Interpretação Estatística de Dados , Proteoma , Proteômica , Software , Biologia Computacional/métodos , Ontologia Genética , Proteômica/métodos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA