Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Respir Res ; 25(1): 264, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965590

RESUMO

BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.


Assuntos
Broncoscopia , Impedância Elétrica , Animais , Suínos , Broncoscopia/métodos , Pneumonectomia/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Pulmão/cirurgia , Pulmão/fisiologia , Tomografia/métodos , Atelectasia Pulmonar/diagnóstico por imagem , Atelectasia Pulmonar/fisiopatologia , Medidas de Volume Pulmonar/métodos , Fatores de Tempo
2.
Biomacromolecules ; 24(7): 3380-3396, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37337408

RESUMO

Dynamic G-quadruplex supramolecular hydrogels have aroused great interest in a broad range of bioapplications. However, neither the development of native extracellular matrix (ECM)-derived natural biopolymer-functionalized G-quadruplex hydrogels nor their use to create perfusable self-supporting hydrogels has been explored to date, despite their intrinsic potential as carrier vehicles of therapeutic agents, or even living cells in advanced regenerative therapies, or as platforms to enable the diffusion of nutrients and oxygen to sustain long-term cell survival. Herein, we developed a dynamic co-assembling multicomponent system that integrates guanosine (G), 3-aminophenylboronic acid functionalized hyaluronic acid (HA-PBA), and potassium chloride to bioengineer strong, homogeneous, and transparent HA-functionalized G-quadruplex hydrogels with injectable, thermo-reversible, conductive, and self-healing properties. The supramolecular polymeric hydrogels were developed by hydrogen bonding and π-π stacking interactions between G coupled via dynamic covalent boronate ester bonds to HA-PBA and stabilized by K+ ions, as demonstrated by a combination of experiments and molecular dynamics simulations. The intrinsic instability of the self-assembled G-quadruplex structures was used to bioengineer self-supporting perfusable multicomponent hydrogels with interconnected size and shape-tunable hollow microchannels when embedded in 3D methacrylated gelatin supporting matrices. The microchannel-embedded 3D constructs have shown enhanced cell viability when compared to the bulk hydrogels, holding great promise for being use as artificial vessels for enabling the diffusion of nutrients and oxygen essential for cell survival. The proposed approach opens new avenues on the use of ECM-derived natural biopolymer-functionalized dynamic G-quadruplex hydrogels to design next-generation smart systems for being used in tissue regeneration, drug screening, or organ-on-a-chip.


Assuntos
Ácido Hialurônico , Hidrogéis , Ácido Hialurônico/química , Hidrogéis/química , Matriz Extracelular/química , Gelatina/química
3.
Mar Drugs ; 21(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36827133

RESUMO

Marine-origin polysaccharides, in particular cationic and anionic ones, have been widely explored as building blocks in fully natural or hybrid electrostatic-driven Layer-by-Layer (LbL) assemblies for bioapplications. However, the low chemical versatility imparted by neutral polysaccharides has been limiting their assembly into LbL biodevices, despite their wide availability in sources such as the marine environment, easy functionality, and very appealing features for addressing multiple biomedical and biotechnological applications. In this work, we report the chemical functionalization of laminarin (LAM) and pullulan (PUL) marine polysaccharides with peptides bearing either six lysine (K6) or aspartic acid (D6) amino acids via Cu(I)-catalyzed azide-alkyne cycloaddition to synthesize positively and negatively charged polysaccharide-peptide conjugates. The successful conjugation of the peptides into the polysaccharide's backbone was confirmed by proton nuclear magnetic resonance and attenuated total reflectance Fourier-transform infrared spectroscopy, and the positive and negative charges of the LAM-K6/PUL-K6 and LAM-D6/PUL-D6 conjugates, respectively, were assessed by zeta-potential measurements. The electrostatic-driven LbL build-up of either the LAM-D6/LAM-K6 or PUL-D6/PUL-K6 multilayered thin film was monitored in situ by quartz crystal microbalance with dissipation monitoring, revealing the successful multilayered film growth and the enhanced stability of the PUL-based film. The construction of the PUL-peptide multilayered thin film was also assessed by scanning electron microscopy and its biocompatibility was demonstrated in vitro towards L929 mouse fibroblasts. The herein proposed approach could enable the inclusion of virtually any kind of small molecules in the multilayered assemblies, including bioactive moieties, and be translated into more convoluted structures of any size and geometry, thus extending the usefulness of neutral polysaccharides and opening new avenues in the biomedical field, including in controlled drug/therapeutics delivery, tissue engineering, and regenerative medicine strategies.


Assuntos
Polissacarídeos , Medicina Regenerativa , Animais , Camundongos , Eletricidade Estática , Peptídeos , Engenharia Tecidual
4.
Mar Drugs ; 21(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36976196

RESUMO

Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans' exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic-inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.


Assuntos
Quitosana , Animais , Quitosana/química , Materiais Biocompatíveis/química , Quitina/química , Polissacarídeos/química , Crustáceos , Engenharia Tecidual
5.
An Acad Bras Cienc ; 95(1): e20211079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37222361

RESUMO

This study evaluated the effectiveness of Federal Protected Areas on the coast of the state of Paraíba in northeastern Brazil with regard to the preservation of mangrove forests. The study area encompassed remaining mangrove forests distributed in four federal protected areas (PAs) located in Paraíba: Area of Relevant Ecological Interest (AREI) of Mangroves of the Mamanguape River, Environmental Protection Area (EPA) of the Mamanguape River, the Restinga de Cabedelo National Forest (NATFOR), and the Acaú-Goiana Extractive Reserve (EXTRES). The methods consisted of a spatiotemporal analysis considering the year of creation of each PA, with mapping and quantification as well as the assessment of impacts and effectiveness. NATFOR and EXTRES had the most conserved mangrove areas on the temporal scale, whereas AREI and EPA had the largest reductions in areas of mangrove forest. Urban expansion, sugarcane monoculture, and shrimp farming represented the main negative impacts spatially identified in these PAs. Based on the results of this study, the mangrove forests analyzed have continually suffered anthropogenic pressures since their creation as protected areas. The greatest effectiveness in the preservation of mangrove forests was found in Acaú-Goiana EXTRES and the least effectiveness was found in the AREI of Mangroves of the Mamanguape River.


Assuntos
Agricultura , Áreas Alagadas , Brasil , Grão Comestível , Fazendas
6.
An Acad Bras Cienc ; 95(suppl 1): e20220574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729289

RESUMO

The Antillean manatee occurs discontinuously from the state of Amapá to the state of Alagoas on the coast of Brazil. There is also evidence of reintroduced manatees using the coasts of Sergipe and Bahia, with a preference for calm shallow waters. This study characterized the home range areas of six rehabilitated manatees released in northeastern Brazil. The activities were conducted in the states of Paraíba, Sergipe, and Bahia. Type of environment, substrate, depth, aquatic vegetation, physicochemical variables of the water, presence of solid waste, human settlements, and watercraft were considered to characterize the areas. The results showed a manatee preference for sheltered areas. Resources were available in larger quantities in the dry season, and a reduction in the availability of food items was fund over the years. High overlap was found in the multivariate space of the individuals in terms of the characteristics of the habitats. The estuary of the Paraíba River and the coastal area of Cabedelo Beach in Paraíba showed the greatest amount of solid waste, human settlements, and watercraft. Released manatees exhibited a preference for sites shallower than two meters, with food resources and fresh water availability.


Assuntos
Trichechus manatus , Humanos , Animais , Brasil , Comportamento de Retorno ao Território Vital , Resíduos Sólidos , Trichechus
7.
Sensors (Basel) ; 23(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112337

RESUMO

Multi-human detection and tracking in indoor surveillance is a challenging task due to various factors such as occlusions, illumination changes, and complex human-human and human-object interactions. In this study, we address these challenges by exploring the benefits of a low-level sensor fusion approach that combines grayscale and neuromorphic vision sensor (NVS) data. We first generate a custom dataset using an NVS camera in an indoor environment. We then conduct a comprehensive study by experimenting with different image features and deep learning networks, followed by a multi-input fusion strategy to optimize our experiments with respect to overfitting. Our primary goal is to determine the best input feature types for multi-human motion detection using statistical analysis. We find that there is a significant difference between the input features of optimized backbones, with the best strategy depending on the amount of available data. Specifically, under a low-data regime, event-based frames seem to be the preferred input feature type, while higher data availability benefits the combined use of grayscale and optical flow features. Our results demonstrate the potential of sensor fusion and deep learning techniques for multi-human tracking in indoor surveillance, although it is acknowledged that further studies are needed to confirm our findings.


Assuntos
Cultura , Fluxo Óptico , Humanos , Iluminação , Movimento (Física) , Projetos de Pesquisa
8.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420776

RESUMO

In the context of Shared Autonomous Vehicles, the need to monitor the environment inside the car will be crucial. This article focuses on the application of deep learning algorithms to present a fusion monitoring solution which was three different algorithms: a violent action detection system, which recognizes violent behaviors between passengers, a violent object detection system, and a lost items detection system. Public datasets were used for object detection algorithms (COCO and TAO) to train state-of-the-art algorithms such as YOLOv5. For violent action detection, the MoLa InCar dataset was used to train on state-of-the-art algorithms such as I3D, R(2+1)D, SlowFast, TSN, and TSM. Finally, an embedded automotive solution was used to demonstrate that both methods are running in real-time.


Assuntos
Algoritmos , Corrida , Veículos Autônomos , Reconhecimento Psicológico
9.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674644

RESUMO

Conventional bone cancer treatment often results in unwanted side effects, critical-sized bone defects, and inefficient cancer-cell targeting. Therefore, new approaches are necessary to better address bone cancer treatment and patient's recovery. One solution may reside in the combination of bone regeneration scaffolds with magnetic hyperthermia. By incorporating pristine superparamagnetic iron oxide nanoparticles (pSPIONs) into additively manufactured scaffolds we created magnetic structures for magnetic hyperthermia and bone regeneration. For this, hydroxyapatite (HA) particles were integrated in a polymeric matrix composed of chitosan (CS) and poly (vinyl alcohol) (PVA). Once optimized, pSPIONs were added to the CS/PVA/HA paste at three different concentrations (1.92, 3.77, and 5.54 wt.%), and subsequently additively manufactured to form a scaffold. Results indicate that scaffolds containing 3.77 and 5.54 wt.% of pSPIONs, attained temperature increases of 6.6 and 7.5 °C in magnetic hyperthermia testing, respectively. In vitro studies using human osteosarcoma Saos-2 cells indicated that pSPIONs incorporation significantly stimulated cell adhesion, proliferation and alkaline phosphatase (ALP) expression when compared to CS/PVA/HA scaffolds. Thus, these results support that CS/PVA/HA/pSPIONs scaffolds with pSPIONs concentrations above or equal to 3.77 wt.% have the potential to be used for magnetic hyperthermia and bone regeneration.


Assuntos
Quitosana , Hipertermia Induzida , Humanos , Quitosana/química , Durapatita/química , Alicerces Teciduais/química , Regeneração Óssea , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos , Engenharia Tecidual/métodos
10.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445749

RESUMO

Implantology is crucial for restoring aesthetics and masticatory function in oral rehabilitation. Despite its advantages, certain issues, such as bacterial infection, may still arise that hinder osseointegration and result in implant rejection. This work aims to address these challenges by developing a biomaterial for dental implant coating based on 45S5 Bioglass® modified by zirconium insertion. The structural characterization of the glasses, by XRD, showed that the introduction of zirconium in the Bioglass network at a concentration higher than 2 mol% promotes phase separation, with crystal phase formation. Impedance spectroscopy was used, in the frequency range of 102-106 Hz and the temperature range of 200-400 K, to investigate the electrical properties of these Bioglasses, due to their ability to store electrical charges and therefore enhance the osseointegration capacity. The electrical study showed that the presence of crystal phases, in the glass ceramic with 8 mol% of zirconium, led to a significant increase in conductivity. In terms of biological properties, the Bioglasses exhibited an antibacterial effect against Gram-positive and Gram-negative bacteria and did not show cytotoxicity for the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the results of the bioactivity test revealed that within 24 h, a CaP-rich layer began to form on the surface of all the samples. According to our results, the incorporation of 2 mol% of ZrO2 into the Bioglass significantly improves its potential as a coating material for dental implants, enhancing both its antibacterial and osteointegration properties.


Assuntos
Implantes Dentários , Zircônio/farmacologia , Zircônio/química , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cerâmica/farmacologia , Cerâmica/química , Vidro/química , Propriedades de Superfície
11.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982320

RESUMO

Dental implants have emerged as one of the most consistent and predictable treatments in the oral surgery field. However, the placement of the implant is sometimes associated with bacterial infection leading to its loss. In this work, we intend to solve this problem through the development of a biomaterial for implant coatings based on 45S5 Bioglass® modified with different amounts of niobium pentoxide (Nb2O5). The structural feature of the glasses, assessed by XRD and FTIR, did not change in spite of Nb2O5 incorporation. The Raman spectra reveal the Nb2O5 incorporation related to the appearance of NbO4 and NbO6 structural units. Since the electrical characteristics of these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were studied by impedance spectroscopy, in the frequency range of 102-106 Hz and temperature range of 200-400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line. The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative bacteria revealed that the samples loaded with 2 mol% Nb2O5 had the highest bioactivity and greatest antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to mammalian cells.


Assuntos
Implantes Dentários , Animais , Nióbio/química , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Vidro/química , Cerâmica/química , Mamíferos
12.
Angew Chem Int Ed Engl ; 62(34): e202217841, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37377145

RESUMO

Pressing global challenges, such as climate change, the COVID-19 pandemic, or antibiotic resistance, require coordinated international responses guided by evidence-informed decisions. For this purpose, it is critical that scientists engage in providing insights during the decision-making process. However, the mechanisms for the engagement of scientists in policy-making are complex and vary internationally, which often poses significant challenges to their involvement. Herein, we address some of the mechanisms and barriers for scientists to engage in policy-making with a global perspective by early-career scientists. We highlight the importance of scientific academies, societies, universities, and early-career networks as stakeholders and how they can adapt their structures to actively contribute to shaping global policies, with representative examples from chemistry-related disciplines. We showcase the importance of raising awareness, providing resources and training, and leading discussions about connecting emerging scientists with global decision-makers to address societal challenges through policies.


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Formulação de Políticas , Políticas
13.
Calcif Tissue Int ; 110(1): 74-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415388

RESUMO

The Asian and Latin America Fracture Observational Study (ALAFOS) is a prospective, observational, single-arm study conducted in 20 countries across Asia, Latin America and the Middle East. ALAFOS evaluated new clinical vertebral and non-vertebral fragility fractures in relation to time on teriparatide, in postmenopausal women with osteoporosis in real-life clinical practice. Clinical fragility fractures, back pain, and health-related quality of life (HRQoL) were recorded in 6-month intervals for ≤ 24 months during teriparatide treatment and up to 12-months post-treatment. Data were analysed with piecewise exponential regression with inverse probability weighting for time to event outcomes and mixed-model repeated measures for back pain and HRQoL. 3054 postmenopausal women started teriparatide and attended ≥ one follow-up visit (mean [SD] age 72.5 [10.4] years). The median (95% CI) time to treatment discontinuation was 22.0 months (21.2, 22.8). During the treatment period, 111 patients (3.6%) sustained 126 clinical fractures (2.98 fractures/100 patient-years). Rates of new clinical fragility fractures were significantly decreased during the > 6-12, > 12-18, and > 18-24-month periods, as compared with the first 6 months of treatment (hazard ratio [HR] 0.57; 95% CI 0.37, 0.88; p = 0.012; HR 0.35; 95% CI 0.19, 0.62; p < 0.001; HR 0.43; 95% CI 0.23, 0.83; p = 0.011; respectively). Patients also reported an improvement in back pain and HRQoL (p < 0.001). These results provide data on the real-world effectiveness of teriparatide in the ALAFOS regions and are consistent with other studies showing reduction of fractures after 6 months of teriparatide treatment. These results should be interpreted in the context of the noncontrolled design of this observational study.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Idoso , Conservadores da Densidade Óssea/uso terapêutico , Feminino , Humanos , América Latina , Osteoporose Pós-Menopausa/complicações , Osteoporose Pós-Menopausa/tratamento farmacológico , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/prevenção & controle , Pós-Menopausa , Estudos Prospectivos , Qualidade de Vida , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/prevenção & controle , Teriparatida/uso terapêutico
14.
An Acad Bras Cienc ; 94(1): e20201184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239771

RESUMO

The inadequate choice of a diagnostic method or the option for techniques that have low sensitivity and specificity may limit the diagnosis of parasitic agents that affect aquatic mammals. The aim of this study was to evaluate the performance of the FLOTAC technique and compare it with three traditional methods (Willis, sedimentation and centrifugation- flotation) used in the diagnosis of gastrointestinal parasites in aquatic mammals. For this, 129 fecal samples from 12 species were collected. Each sample was submitted to laboratory processing using the Willis, Hoffman techniques, Faust method and FLOTAC. Sensitivity, specificity, real prevalence, estimated prevalence, positive predictive value, negative predictive value, correct classification (accuracy) and incorrect classification were evaluated to compare the different diagnostic methods. The highest frequency of positive samples occurred using FLOTAC (46.51%), compared to Hoffman (23.25%), Faust (10.07%) and Willis techniques (6.97%). In the samples analyzed, the occurrence of Strongylidae eggs and Eimeriidae oocysts was frequently observed. The FLOTAC technique proved to be the most appropriate technique and due to its efficacy, is strongly recommended for coproparasitological evaluations in aquatic mammals.


Assuntos
Enteropatias Parasitárias , Parasitos , Animais , Fezes/parasitologia , Enteropatias Parasitárias/parasitologia , Mamíferos/parasitologia , Contagem de Ovos de Parasitas/métodos , Sensibilidade e Especificidade
15.
BMC Pulm Med ; 21(1): 133, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33894747

RESUMO

BACKGROUND: Among the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics. Right-left lung aeration asymmetry and poorly recruitable lungs with increased recruitability with alternating body position between supine and prone have been reported. However, real-time effects of changing body position and PEEP on regional overdistension and collapse, in individual patients, remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP and body positioning in order to reduce the mechanisms of ventilator-induced lung injury: collapse and overdistension. METHODS: We here report a series of five consecutive mechanically ventilated patients with COVID-19-associated ARDS in which sixteen decremental PEEP titrations were performed in the first days of mechanical ventilation (8 titration pairs: supine position immediately followed by 30° targeted lateral position). The choice of lateral tilt was based on X-Ray. This targeted lateral position strategy was defined by selecting the less aerated lung to be positioned up and the more aerated lung to be positioned down. For each PEEP level, global and regional collapse and overdistension maps and percentages were measured by electrical impedance tomography. Additionally, we present the incidence of lateral asymmetry in a cohort of forty-four patients. RESULTS: The targeted lateral position strategy resulted in significantly smaller amounts of overdistension and collapse when compared with the supine one: less collapse along the PEEP titration was found within the left lung in targeted lateral (P = 0.014); and less overdistension along the PEEP titration was found within the right lung in targeted lateral (P = 0.005). Regarding collapse within the right lung and overdistension within the left lung: no differences were found for position. In the cohort of forty-four patients, ventilation inequality of > 65/35% was observed in 15% of cases. CONCLUSIONS: Targeted lateral positioning with bedside personalized PEEP provided a selective attenuation of overdistension and collapse in mechanically ventilated patients with COVID-19-associated ARDS and right-left lung aeration/ventilation asymmetry. TRIAL REGISTRATION: Trial registration number: NCT04460859.


Assuntos
COVID-19/terapia , Posicionamento do Paciente/métodos , Atelectasia Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Impedância Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Respiração com Pressão Positiva/métodos , Estudos Prospectivos , Atelectasia Pulmonar/terapia , Respiração Artificial/métodos , SARS-CoV-2
16.
Sensors (Basel) ; 22(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009846

RESUMO

COVID-19 was responsible for devastating social, economic, and political effects all over the world. Although the health authorities imposed restrictions provided relief and assisted with trying to return society to normal life, it is imperative to monitor people's behavior and risk factors to keep virus transmission levels as low as possible. This article focuses on the application of deep learning algorithms to detect the presence of masks on people in public spaces (using RGB cameras), as well as the detection of the caruncle in the human eye area to make an accurate measurement of body temperature (using thermal cameras). For this task, synthetic data generation techniques were used to create hybrid datasets from public ones to train state-of-the-art algorithms, such as YOLOv5 object detector and a keypoint detector based on Resnet-50. For RGB mask detection, YOLOv5 achieved an average precision of 82.4%. For thermal masks, glasses, and caruncle detection, YOLOv5 and keypoint detector achieved an average precision of 96.65% and 78.7%, respectively. Moreover, RGB and thermal datasets were made publicly available.


Assuntos
COVID-19 , Aprendizado Profundo , Algoritmos , Humanos , SARS-CoV-2
17.
J Aquat Anim Health ; 33(3): 125-132, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34121245

RESUMO

Among the bacterial infections that impair the health status of marine mammals, those caused by Brucella spp. are the most reported worldwide. Brucella infections in marine mammals can result in acute or chronic disease and are associated with variable clinical outcomes, depending on the organ involved during the infectious process, infection route, host immunity, and strain pathogenicity. Asymptomatic infections may also occur. The current study expands the investigation of Brucella infection in northeast Brazil by analyzing 19 dead, stranded cetaceans and 52 Antillean manatees Trichechus manatus manatus. The manatees included 8 dead, captive manatees and 44 live specimens, of which 10 were analyzed only after reintroduction into the wild as part of a rehabilitation program, 9 were analyzed both while in captivity or semi-captivity and after reintroduction, 20 were sampled only in captivity or semi-captivity, and 5 were free-living manatees. Serological tests were used to screen for antibodies against smooth Brucella spp. Whole blood, swabs, and tissue samples were screened for Brucella spp. DNA by PCR. Samples with positive PCR results were cultured for Brucella spp. isolation. All manatees yielded negative results in serological and molecular tests. Brucella spp. DNA was detected in the kidney of one adult Guiana dolphin Sotalia guianensis exhibiting necrosis in the liver. No growth of Brucella spp. was observed via microbiological culturing. This study is the first report of Brucella spp. DNA detection in cetaceans in the state of Pernambuco, and it highlights the importance of conducting systematic monitoring for the presence of Brucella infection in marine mammals along the Brazilian coast, especially in the northeast region, where several cases have been reported.


Assuntos
Brucelose , Trichechus manatus , Animais , Brasil/epidemiologia , Brucelose/epidemiologia , Brucelose/veterinária , Testes Sorológicos/veterinária , Trichechus
18.
Bull Environ Contam Toxicol ; 107(1): 11-19, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34236454

RESUMO

In the present study, sea urchin Sterechinus neumayeri tissues were used for the passive biomonitoring of toxic and trace elements at the Comandante Ferraz Station, Antarctica and compared to a pristine region (Botany). As, Ba, Br, Ca, Co, Cr, Fe, K, Na, Rb, Sc, Se and Zn concentrations were determined by instrumental neutron activation analysis (INAA), while toxic metals (Cd, Hg, Ni and Pb), and Cu were determined by atomic absorption spectrometry (GF-AAS). The findings were compared to other organisms commonly applied for biomonitoring purposes and to the sediment concentrations of each sampling region. Urchins from the Ferraz Station area presented higher Br, Co, Cr, Cs, K, Se and Zn levels than the pristine location. The results obtained herein suggest S. neumayeri can be applied to the biomonitoring of Cr and Zn. The present study also contributes to knowledge of the mineral composition of the sea urchin S. neumayeri.


Assuntos
Oligoelementos , Animais , Regiões Antárticas , Monitoramento Biológico , Monitoramento Ambiental , Análise de Ativação de Nêutrons , Ouriços-do-Mar , Oligoelementos/análise
19.
Soft Matter ; 16(26): 6063-6071, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510086

RESUMO

The build-up and degradation of cytocompatible nanofilms in a controlled fashion have great potential in biomedical and nanomedicinal fields, including single-cell nanoencapsulation (SCNE). Herein, we report the fabrication of biodegradable films of cationic starch (c-ST) and anionic alginate (ALG) by electrostatically driven layer-by-layer (LbL) assembly technology and its application to the SCNE. The [c-ST/ALG] multilayer nanofilms, assembled either on individual Saccharomyces cerevisiae or on the 2D flat gold surface, degrade on demand, in a cytocompatible fashion, via treatment with α-amylase. Their degradation profiles are investigated, while systematically changing the α-amylase concentration, by several surface characterization techniques, including quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. DNA incorporation in the LbL nanofilms and its controlled release, upon exposure of the nanofilms to an aqueous α-amylase solution, are demonstrated. The highly cytocompatible nature of the film-forming and -degrading conditions is assessed in the c-ST/ALG-shell formation and degradation of S. cerevisiae. We envisage that the cytocompatible, enzymatic degradation of c-ST-based nanofilms paves the way for developing advanced biomedical devices with programmed dissolution in vivo.


Assuntos
Saccharomyces cerevisiae , Amido , Alginatos , DNA , Técnicas de Microbalança de Cristal de Quartzo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA