RESUMO
Graphite sheet (GS) electrodes are flexible and versatile substrates for sensing electrochemical; however, their use has been limited to incorporate (bio)chemical modifiers. Herein, we demonstrated that a cold (low temperature) CO2 plasma treatment of GS electrodes provides a substantial improvement of the electrochemical activity of these electrodes due to the increased structural defects on the GS surface as revealed by Raman spectroscopy (ID/IG ratio), and scanning electron microscopy images. XPS analyses confirmed the formation of oxygenated functional groups at the GS surface after the plasma treatment that are intrinsically related to the substantial increase in the electron transfer coefficient (K0 values increased from 1.46 × 10-6 to 2.09 × 10-3 cm s-1) and with reduction of the resistance to charge transfer (from 129.8 to 0.251 kΩ). The improved electrochemical activity of CO2-GS electrodes was checked for the detection of emerging contaminant species, such as chloramphenicol (CHL), ciprofloxacin (CIP) and sulphanilamide (SUL) antibiotics, at around + 0.15, + 1.10 and + 0.85 V (versus Ag/AgCl), respectively, by square wave voltammetry. Limit of detection values in the submicromolar range were achieved for CHL (0.08 µmol L-1), CIP (0.01 µmol L-1) and SFL (0.11 µmol L-1), which enabled the sensor to be successfully applied to natural waters and urine samples (recovery values from 85 to 119%). The CO2-GS electrode is highly stable and inexpensive ($0.09 each sensor) and can be easily inserted in portable 3D printed cells for environmental on-site analyses.
Assuntos
Cloranfenicol , Grafite , Ciprofloxacina , Sulfanilamida , Dióxido de Carbono , EletrodosRESUMO
Electrochemical water splitting is a promising approach in the development of renewable energy technologies, providing an alternative to fossil fuels. It has attracted considerable attention in recent years. The benchmark materials used in water splitting are precious metals that are expensive and scarce. Therefore, this work proposes a strategic electrochemical synthesis of a reduced graphene oxide and cobalt-nickel hexacyanoferrate (rGO/CoNiHCF)-derived composite (rGO/CoNiPBd-OOH) to achieve optimized OER performance. The optimum rGO/CoNiHCF was fabricated with the Co:Ni precursors in a 3:1 ratio with a ferricyanide solution of pH = 1.0. Using an alkaline electrochemical treatment, the well-distributed globular particles of CoNiHCF over rGO sheets were converted into layered frameworks of metallic (oxy)hydroxide species, giving the final rGO/CoNiPBd-OOH nanocomposite. This nanocomposite presented favorable kinetic activity resulting in a Tafel slope of 33 mV dec-1, while rGO, CoNiPBd-OOH, and RuO2 exhibited slopes of 80, 47, and 51 mV dec-1, respectively. Although the benchmark RuO2 electrocatalyst showed a lower overpotential (240 mV dec-1) at a current density of 10 mA cm-2, the rGO/CoNiPBd-OOH performed well with an overpotential of 346 mV, combined with superior stability compared to CoNiPBd-OOH and RuO2, maintaining a current density of 10 mA cm-2 for 15 h with an overpotential loss of 6.92%. This work successfully presents an "all-electrochemical" synthesis of a rGO/CoNiHCF-derived material with remarkable electrocatalytic activity for OER assisted by a strategic preparation methodology, which helped to understand the influence of synthetic parameters and choose their conditions to achieve the optimum OER performance.