RESUMO
Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.
RESUMO
Oreochromis niloticus (Nile tilapia) skin is a by-product of Brazilian fish farming, rich in collagen. The present study aims to evaluate the wound healing, antioxidant, and antimicrobial potential of the raw hydrolyzed extract of Nile tilapia skin, as well as the identification of the main compounds. The inâ vitro activity was performed using antioxidant, antimicrobial and scratch wound healing assays. An inâ vivo experiment was performed to evaluate the wound healing potential. On daysâ 1, 7, 14 and 21, the lesions were photographed to assess wound retraction and on the 7th , 14th and 21st â days the skins were removed for histological evaluation and the blood of the animals was collected for glutamic oxaloacetic transaminase and glutamic pyruvic transaminase determination. The chemical study was carried out through liquid chromatography-tandem mass spectrometry and de novo sequencing of peptides. The inâ vitro assays showed a reduction of the gap area in 24â h, dose-dependent antimicrobial activity for both bacteria, and antioxidant activity. The chemical analysis highlighted the presence of active biopeptides. The histological evaluation showed that the raw hydrolyzed extract of Nile tilapia skin has a healing potential, and does not present toxicological effects; therefore, is promising for the treatment of wounds.