Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 169(3): 43, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334819

RESUMO

Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), and Israeli acute paralysis virus (IAPV) usually persist as covert infections in honey bee colonies. They can cause rapid bee mortality in cases of severe infection, often associated with high Varroa destructor infestation, by which they are transmitted. In various countries, these viruses have been associated with colony collapse. Despite their potential danger, these viruses are often disregarded, and little information is available on their occurrence in many countries, including Italy. In 2021, 370 apiaries representing all of the Italian regions were investigated in four different months (June, September, November, and March) for the presence of ABPV, KBV, and IAPV. IAPV was not found in any of the apiaries investigated, whereas 16.45% and 0.67% of the samples tested positive for ABPV and KBV, respectively. Most ABPV cases occurred in late summer-autumn in both northern and southern regions. We observed a scattered pattern of KBV-positive colonies that did not allow any seasonal or regional trends to be discerned. Differences observed among regions and months were potentially related to the dynamics of varroa infestation, viral genetic variations, and different climatic conditions resulting in variations in bee behaviour. This study improves our understanding of the circulation of bee viruses and will contribute to better disease prevention and preservation of bee health.


Assuntos
Dicistroviridae , Varroidae , Vírus , Abelhas , Animais , Dicistroviridae/genética , Estações do Ano
2.
Environ Res ; 248: 118365, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301758

RESUMO

The rise of antimicrobial resistance (AMR) is one of the most relevant problems for human and animal health. According to One Health Approach, it is important to regulate the use of antimicrobials and monitor the spread of AMR in the environment as well. Apis mellifera (L. 1758) colonies were used as bioindicators thanks to their physical and behavioural characteristics. During their foraging flights, bees can intercept small particles, including atmospheric particulate matter, etc., and also microorganisms. To date, the antimicrobial surveillance network is limited to the sanitary level but lacks into environmental context. This study aimed to evaluate the use of A. mellifera colonies distributed throughout the Emilia-Romagna region (Italy) as indicators of environmental antimicrobial-resistant bacteria. This was performed by creating a statistical predictive model that establishes correlations between environmental characteristics and the likelihood of isolating specific bacterial genera and antimicrobial-resistant strains. A total of 608 strains were isolated and tested for susceptibility to 19 different antimicrobials. Aztreonam-resistant strains were significantly related to environments with sanitary structures, agricultural areas and wetlands, while urban areas present a higher probability of trimethoprim/sulfamethoxazole-resistant strains isolation. Concerning genera, environments with sanitary structures and wetlands are significantly related to the genera Proteus spp., while the Escherichia spp. strains can be probably isolated in industrial environments. The obtained models showed maximum values of Models Accuracy and robustness (R2) of 55 % and 24 %, respectively. The results indicate the efficacy of utilizing A. mellifera colonies as valuable bioindicators for estimating the prevalence of AMR in environmentally disseminated bacteria. This survey can be considered a good basis for the development of further studies focused on monitoring both sanitary and animal pathology, creating a specific network in the environments of interest.


Assuntos
Antibacterianos , Biomarcadores Ambientais , Humanos , Abelhas , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Bactérias , Meio Ambiente
3.
Arch Insect Biochem Physiol ; 115(1): e22085, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288497

RESUMO

Amino acids (AAs) are an abundant class of nectar solutes, and they are involved in the nectar attractiveness to flower visitors. Among the various AAs, proline is the most abundant proteogenic AA, and γ-amino butyric acid (GABA) and ß-alanine are the two most abundant non-proteogenic AAs. These three AAs are known to affect insect physiology, being involved in flight metabolism and neurotransmission. The aim of this study was to investigate the effects of artificial diets enriched with either ß-alanine, GABA, or proline on consumption, survival, and hemolymph composition in honey bees belonging to two different ages and with different metabolism (i.e., newly emerged and foragers). Differences in feed intake among diets were not observed, while a diet enriched with ß-alanine improved the survival rate of newly emerged honey bees compared to the control group. Variations in the hemolymph AA concentrations occurred only in newly emerged honey bees, according to the diet and the time of hemolymph sampling. A greater susceptibility of young honey bees to enriched diets than older honey bees was observed. The variations in the concentrations of hemolymph AAs reflect either the accumulation of dietary AAs or the existence of metabolic pathways that may lead to the conversion of dietary AAs into different ones. This investigation could be an initial contribution to studying the complex dynamics that regulate hemolymph AA composition and its effect on honey bee physiology.


Assuntos
Aminoácidos , Néctar de Plantas , Abelhas , Animais , Aminoácidos/metabolismo , Néctar de Plantas/análise , Néctar de Plantas/metabolismo , Hemolinfa/metabolismo , Dieta , beta-Alanina/análise , beta-Alanina/metabolismo , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo , Prolina/análise , Prolina/metabolismo
4.
Bull Entomol Res ; 114(1): 67-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179982

RESUMO

From the 1990s, the Southeast Asia native giant resin bee Megachile sculpturalis (Smith, 1853) was introduced first to North America, and then to many countries in Europe. Despite increasing studies on its invasive potential and geographical expansion, information on nesting behaviour of this species is still extremely scarce. To increase knowledge on the nesting biology of M. sculpturalis, we studied multiple aspects of nesting and pollen provisioning in three consecutive years in artificial nests in Bologna, Italy. We observed 166 bees visiting nests, and followed individual nesting behaviour and success of 41 adult females. We measured cavity diameter in 552 nests and characterised the structure in 100 of them. More than 95% of nest diameters ranged between 0.6 and 1.2 cm, overlapping with several sympatric species of cavity-nesting hymenopterans in the study area. Most nests had a first chamber from the entrance of variable length without brood, followed by an average of about two brood cells with a mean length of 2.85 ± 0.13 cm each. The pollen stored in brood cells was almost monofloral, belonging to the ornamental plant Styphnolobium japonicum (L.) Schott. We estimated that a single female should visit ≈180 flowers to collect enough pollen for a single brood cell. These results fill knowledge gaps on the nesting biology and nest structure of the exotic M. sculpturalis, and they are discussed in relation to possible competition with native bees for nesting sites and foraging resources.


Assuntos
Comportamento de Nidação , Pólen , Feminino , Abelhas , Animais , Flores , Biologia , Europa (Continente)
6.
J Chem Ecol ; 45(3): 278-285, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30613849

RESUMO

Nectar mediates complex interactions between plants and animals. Recent research has focused on nectar secondary compounds that may play a role in regulating some of these interactions. These compounds may affect the behavior of nectar feeders by interacting with their neurobiology. Non-protein amino acids (NPAAs) can constitute a large portion of the amino acid content of floral nectar, but their ecological function has, to date, not been investigated. In this study, we tested the effects of diets with low and high concentrations of γ-amino butyric acid (GABA) and ß-alanine on the survival and behavior of Bombus terrestris and Apis mellifera. The most apparent effect on longevity was observed for B. terrestris workers that fed on high concentration of GABA, with longevity increased. By contrast, neither of the two NPAAs (at either concentration) had an affect on A. mellifera longevity. At the low NPAA concentration, only B. terrestris workers showed a difference in consumption, consuming more ß-alanine solution than the other two solutions. By contrast, at the high NPAA concentration, only A. mellifera workers showed a difference in consumption, consuming more ß-alanine solution. The effects of the NPAAs on behavior differed between the two species, with B. terrestris appearing more sensitive to the NPAAs than A. mellifera. After consuming NPAAs, B. terrestris showed changes in three (walking, flying, stationary) of the four behaviors recorded, although the effects varied with concentration and compound. In contrast, honey bees only showed a change in feeding behavior, with consumption of both NPAAs (at low concentrations) resulting in a decrease. Thus, pollinator intake of NPAAs may have important behavioral/ecological implications.


Assuntos
Aminoácidos/química , Abelhas/fisiologia , Comportamento Alimentar , Néctar de Plantas/química , Animais , Polinização
8.
BMC Vet Res ; 11: 193, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26260563

RESUMO

BACKGROUND: Schmallenberg virus (SBV) has spread across Europe since mid-2011, causing unspecific and transitory symptoms in ruminants and congenital malformations in their offspring. Evidence for the impact of SBV on cattle (re)productive performance is limited. Using a comprehensive data set from a SBV-affected province in North-East Italy, this study aimed at assessing the potential impact of SBV emergence on 11 productive and reproductive performance indicators of dairy cattle herds, accounting for weather conditions and other herd-level factors that could also influence these indicators. RESULTS: A total of 127 farms with an average of 71 cows per farm (range 29-496) were monitored monthly from January 2009 to June 2012. Mixed-effects linear models for longitudinal data were used to assess the average variation in herds' performance indicators over semesters (Jan-Jun 2009, Jul-Dec 2009, Jan-Jun 2010, Jul-Dec 2010, Jan-Jun 2011, Jul-Dec 2011, Jan-Jun 2012) and trimesters therein. Taking the second semester of 2011 as reference, significant decreases in the average lactation length (-6 days, on average) and calving-to-conception interval (-4 days, on average) were observed relative to the same semesters of the years 2010 and 2009, respectively. Similarly, during the last trimester of 2011, which is most likely to cover the SBV infection period in the study area, there was an average decrease of -4 days (lactation length) and -7 days (calving-to-conception interval) compared to the same trimesters of the years 2010 and 2009, respectively. However, the observed decreases actually represent a positive outcome that is not as such imputable to SBV emergence, but rather reflects other beneficial changes in farm management. None of the other indicators showed significant variations, confirming the relatively mild expression of SBV infection in cattle. CONCLUSIONS: Although the emergence of SBV might have significantly affected the (re)productive performance of some individual farms, we concluded that overall at the province level there were no significant variations attributable to SBV, at least not in a way that would lead to negative effects on farm profitability.


Assuntos
Infecções por Bunyaviridae/veterinária , Doenças dos Bovinos/virologia , Indústria de Laticínios , Epidemias/veterinária , Animais , Infecções por Bunyaviridae/epidemiologia , Bovinos , Feminino , Itália/epidemiologia , Orthobunyavirus/isolamento & purificação , Reprodução/fisiologia
9.
Chemosphere ; : 142717, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944352

RESUMO

Colistin is a polymyxin antimicrobic mainly used to treat infection caused by multi-drug resistant Gram-negative bacteria. Mechanisms of colistin resistance are linked to the mobile colistin resistance (mcr) genes, which are transferable within mobile plasmids. Currently, there is limited research on the environmental dissemination of these genes. The behavioural and morphological characteristics of Apis mellifera L. make honey bees effective environmental bioindicators for assessing the prevalence of antimicrobial-resistant bacteria. This study aims to evaluate the colistin phenotypic and genotypic resistance in environmental Gram-negative bacteria isolated from foraging honey bees, across a network of 33 colonies distributed across the Emilia-Romagna region in Italy. Phenotypic resistances were determined through a microdilution assay using the minimum inhibitory concentration (MIC) with dilutions ranging from 0.5 µg/ml to 256 µg/ml. Strains with MIC values gather than 2 µg/ml were classified as resistant. Also, the identification of the nine mcr genes was carried out using two separate multiplex PCR assays. The study found that 68.5% of isolates were resistant and the genus with the higher resistance rates observed in Enterobacter spp. (84.5%). At least one mcr gene was found in 137 strains (53.3%). The most detected gene was mcr5 (35.3%), which was the most frequently detected gene in the seven provinces, while the least observed was mcr4 (4.8%), detected only in two provinces. These results suggested the feasibility of detecting specific colistin resistance genes in environmentally spread bacteria and understanding their distribution at the environmental level, despite their restricted clinical use. In a One-Health approach, this capability enables valuable environmental monitoring, considering the significant role of colistin in the context of public health.

10.
Sci Total Environ ; 945: 174075, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897461

RESUMO

The agricultural intensification represents a major threat to biodiversity, with negative effects on the ecosystem. In particular, habitat loss and degradation, along with pesticide use have been recognised as primary factors contributing to the actual global decline of pollinators. Here we investigated the quality of agroecosystems in the Emilia-Romagna region (Northern Italy) within the national monitoring project BeeNet. We analysed pesticide residues in 100 samples of beebread collected in 25 BeeNet stations in March and June 2021 and 2022. We evaluated diversity and concentration of these chemicals, their risk (TWC) to honey bees, and their correlation with land use. Overall, in 84 % of the samples we found 63 out of 373 different pesticide residues, >90 % of them belonging to fungicides and insecticides. The TWC exceeded the risk threshold in seven samples (TWCmix), mostly due to only one or two compounds. We also found 15 compounds not approved in the EU as plant protection products (PPPs), raising concerns about illegal use or contamination through beeswax recycling. Samples collected in 2021 and in June presented a significantly higher number of active ingredients and TWC than those collected in 2022 and in March. The TWC calculated on single compounds (TWCcom) exceeded the risk threshold in case of four insecticides, namely carbaryl, fipronil, imidacloprid and thiamethoxam (although each detected in only one sample). Finally, both TWC and number of active ingredients were moderately or highly positively correlated with the percentage of area covered by orchards. Considering that we found on average more than five different molecules per sample, and that we ignored potential synergistic effects, the results of this work highlight the alarming situation regarding pesticide treatments and toxicity risk for bees linked to the current agricultural practices, and the need for implementing sustainable and pollinator-friendly strategies.

11.
Sci Rep ; 14(1): 5136, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429345

RESUMO

The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.


Assuntos
Nosema , Onygenales , Trypanosomatina , Humanos , Animais , Abelhas , Fatores Sociais , Crithidia , Itália/epidemiologia
12.
Avian Dis ; 56(4 Suppl): 1021-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23402130

RESUMO

In the Veneto region (northern Italy), some geographic areas in the Po Valley have a large concentration of industrial poultry farms and are located close to wet areas with high populations of wild waterfowl. Live decoy birds belonging to the orders of Anseriformes and Charadriiformes can constitute a "bridge" for avian influenza (AI) viruses between the wild reservoir and the rural holdings where live decoy birds are usually kept, sometimes together with poultry. Thus, the use of live decoy birds during bird hunting could increase the risk of exposure of poultry farms to AI viruses. Since 2008, this kind of hunting has been strictly regulated with regard to the detection and use of live decoy birds. In order to guarantee the application of appropriate AI risk-modulating and monitoring measures in the management of the live decoys according to the European Union (EU) provisions, a solid and well-structured information system has been created. The Regional Data Bank (RDB) of farms and livestock, which has been operating since 1997, also contains data on farms and poultry movements. Therefore, the RDB management software was updated to collect data from the hunters who keep live decoy birds, and specific functions were integrated to ensure the traceability of these birds. Each live decoy bird has been identified by an irremovable ring. The individual code of each ring is recorded in the RDB and linked to both the holder's code and the hunting area. Transfers and death/slaughtering of the registered birds are recorded, too. The activation of a computerized data collection system has proven to be a prerequisite for the implementation of a control system for live decoy birds and provides an essential tool for the management of AI emergencies.


Assuntos
Criação de Animais Domésticos , Patos , Influenza Aviária/epidemiologia , Sistemas de Informação , Animais , Animais Selvagens , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Influenza Aviária/transmissão , Itália/epidemiologia
13.
Phytochem Anal ; 23(3): 260-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21853496

RESUMO

INTRODUCTION: Propolis is a resinous substance collected by bees from exudates of different plants that is rich in well-known health-relevant phenolic compounds such as flavonoids and phenolic acids. Propolis extracts are very complex matrices difficult to study. Different analytical methods are usable to analyse propolis extracts and to obtain chemical fingerprint but to our knowledge NMR has not previously been used for this purpose. OBJECTIVE: This study aims to demonstrate that it is possible to use ¹H-NMR for the simultaneous recognition of phenolic compounds in complex matrices, such as propolis extracts, using appropriate tools for spectra pre-treatment and analysis. METHODOLOGY: In this work 12 typical phenolic propolis compounds (apigenin, chrysin, galangin, kaempferol, quercetin, naringenin, pinocembrin, pinostrobin, caffeic acid, cinnamic acid, p-coumaric acid and ferulic acid) were considered as reference compounds and their presence in samples was verified by HPLC-MS. A simple ¹H-NMR sequence was used to obtain spectra of samples. Spectra were pre-treated by using an appropriate tool for spectra alignment and analysed by using software for the study of spectra originated from complex matrices. Sixty-five propolis samples were used to test the proposed identification procedure. RESULTS: Ten out of 12 considered compounds were identified as statistically significant in most of the samples. CONCLUSION: This work suggests that it is possible to efficiently use ¹H-NMR, coupled with appropriate spectral analytical tools, for the simultaneous detection of phenolic compounds in complex matrices.


Assuntos
Flavonoides/análise , Hidroxibenzoatos/análise , Espectroscopia de Ressonância Magnética/métodos , Extratos Vegetais/análise , Própole/análise , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/isolamento & purificação , Apigenina/análise , Apigenina/isolamento & purificação , Abelhas , Ácidos Cafeicos/análise , Ácidos Cafeicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cinamatos/análise , Cinamatos/isolamento & purificação , Ácidos Cumáricos/análise , Ácidos Cumáricos/isolamento & purificação , Flavanonas/análise , Flavanonas/isolamento & purificação , Flavonoides/isolamento & purificação , Hidroxibenzoatos/isolamento & purificação , Quempferóis/análise , Quempferóis/isolamento & purificação , Espectrometria de Massas , Extratos Vegetais/isolamento & purificação , Propionatos , Própole/isolamento & purificação , Quercetina/análise , Quercetina/isolamento & purificação , Reprodutibilidade dos Testes
14.
Sci Total Environ ; 805: 150327, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34543793

RESUMO

SARS-CoV-2 is responsible for the COVID-19 pandemic. Airflows sustain the infection spread, and in densely urbanized areas airborne particulate matters (PMs) are deemed to aggravate the viral transmission. Apis mellifera colonies are used as bioindicators as they allow environmental sampling of different nature, PMs included. This experiment demonstrates for the first time the possible use of honey bee colonies in the SARS-CoV-2 monitoring. The trial was conducted in Bologna on 18 March 2021, when the third wave of the Italian pandemic was at its peak and environmental conditions allowed high PM concentrations in the air. Sterile swabs were lined up at the hive entrance to sample the dusty material on the body of returning foragers. All of them resulted positive for the target genes of viral SARS-CoV-2 RNA. Likewise, internal samples were taken, but they resulted in no amplification of the target sequences. This experiment does not support speculations about the role of honey bees or their products in SARS-CoV-2 transmission. However, it indicates a novel use of A. mellifera colonies in the environmental detection of airborne human pathogens, at least in a densely urbanized area, deserving better understanding and possible integration with data from automatic air samplers.


Assuntos
COVID-19 , Biomarcadores Ambientais , Animais , Abelhas , Humanos , Pandemias , RNA Viral , SARS-CoV-2
15.
Front Cell Infect Microbiol ; 12: 907489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846743

RESUMO

Diseases contribute to the decline of pollinator populations, which may be aggravated by the interspecific transmission of honey bee pests and pathogens. Flowers increase the risk of transmission, as they expose the pollinators to infections during the foraging activity. In this study, both the prevalence and abundance of 21 honey bee pathogens (11 viruses, 4 bacteria, 3 fungi, and 3 trypanosomatids) were assessed in the flower-visiting entomofauna sampled from March to September 2021 in seven sites in the two North-Italian regions, Emilia-Romagna and Piedmont. A total of 1,028 specimens were collected, identified, and analysed. Of the twenty-one pathogens that were searched for, only thirteen were detected. Altogether, the prevalence of the positive individuals reached 63.9%, with Nosema ceranae, deformed wing virus (DWV), and chronic bee paralysis virus (CBPV) as the most prevalent pathogens. In general, the pathogen abundance averaged 5.15 * 106 copies, with CBPV, N. ceranae, and black queen cell virus (BQCV) as the most abundant pathogens, with 8.63, 1.58, and 0.48 * 107 copies, respectively. All the detected viruses were found to be replicative. The sequence analysis indicated that the same genetic variant was circulating in a specific site or region, suggesting that interspecific transmission events among honey bees and wild pollinators are possible. Frequently, N. ceranae and DWV were found to co-infect the same individual. The circulation of honey bee pathogens in wild pollinators was never investigated before in Italy. Our study resulted in the unprecedented detection of 72 wild pollinator species as potential hosts of honey bee pathogens. Those results encourage the implementation of monitoring actions aiming to improve our understanding of the environmental implications of such interspecific transmission events, which is pivotal to embracing a One Health approach to pollinators' welfare.


Assuntos
Vírus de RNA , Vírus , Animais , Abelhas , Fungos , Itália/epidemiologia , Vírus de RNA/genética
16.
Explore (NY) ; 18(1): 10-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33243594

RESUMO

CONTEXT: Animal Assisted Interventions (AAI), which are generally defined as 'pet therapy', focus on the improvement of human health and wellbeing through a multidisciplinary approach and the involvement of domestic animals. An Italian survey conducted in 2017 revealed that donkeys were the third most involved species in AAI. Nevertheless, data on the main features of the providers of Donkey Assisted Interventions (DAI), especially in Italy, and their organisational models are scarce. OBJECTIVE: This questionnaire-based pilot study aimed to collect information about the features of DAI providers in the Veneto Region to have a general framework about the field. STUDY METHOD: In this descriptive mixed-method pilot study, we interviewed DAI providers through a computer assisted telephone interview. Respondents were selected by integrating data from the Veneto Region Livestock Database and from the Italian official register of AAI professionals. The questionnaire was designed following the advice from Equator Network. MAIN OUTCOME MEASURES: Our outcome measures included the prevalent organisational system adopted by our respondents, main type of AAI programs, and users. Furthermore, we collected qualitative data about economic and income and respondents' personal opinions about DAI (strengths and weaknesses). MAIN RESULTS: Data analysis revealed a heterogeneous picture of the DAI field with a prevalence of non-profit organisations providing mainly Donkey Assisted Activities to a large range of user categories. Despite the poor economic framework and low income from DAI, DAI providers were strongly motivated and spent more time and efforts in delivering this service.


Assuntos
Equidae , Animais , Humanos , Itália , Projetos Piloto , Inquéritos e Questionários
17.
Sci Total Environ ; 827: 154246, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35245544

RESUMO

Complex biotic networks of invaders and their new environments pose immense challenges for researchers aiming to predict current and future occupancy of introduced species. This might be especially true for invasive bees, as they enter novel trophic interactions. Little attention has been paid to solitary, invasive wild bees, despite their increasing recognition as a potential global threat to biodiversity. Here, we present the first comprehensive species distribution modelling approach targeting the invasive bee Megachile sculpturalis, which is currently undergoing parallel range expansion in North America and Europe. While the species has largely colonised the most highly suitable areas of North America over the past decades, its invasion of Europe seems to be in its early stages. We showed that its current distribution is largely explained by anthropogenic factors, suggesting that its spread is facilitated by road and maritime traffic, largely beyond its intrinsic dispersal ability. Our results suggest that M. sculpturalis is likely to be negatively affected by future climate change in North America, while in Europe the potential suitable areas at-risk of invasion remain equally large. Based on our study, we emphasise the role of expert knowledge for evaluation of ecologically meaningful variables implemented and interpreted for species distribution modelling. We strongly recommend that the monitoring of this and other invasive pollinator species should be prioritised in areas identified as at-risk, alongside development of effective management strategies.


Assuntos
Efeitos Antropogênicos , Espécies Introduzidas , Animais , Abelhas , Biodiversidade , Mudança Climática , Ecossistema , Europa (Continente)
18.
Front Genet ; 13: 993416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276969

RESUMO

Human-induced environmental impacts on wildlife are widespread, causing major biodiversity losses. One major threat is agricultural intensification, typically characterised by large areas of monoculture, mechanical tillage, and the use of agrochemicals. Intensification leads to the fragmentation and loss of natural habitats, native vegetation, and nesting and breeding sites. Understanding the adaptability of insects to these changing environmental conditions is critical to predicting their survival. Bumblebees, key pollinators of wild and cultivated plants, are used as model species to assess insect adaptation to anthropogenic stressors. We investigated the effects of agricultural pressures on two common European bumblebees, Bombus pascuorum and B. lapidarius. Restriction-site Associated DNA Sequencing was used to identify loci under selective pressure across agricultural-natural gradients over 97 locations in Europe. 191 unique loci in B. pascuorum and 260 in B. lapidarius were identified as under selective pressure, and associated with agricultural stressors. Further investigation suggested several candidate proteins including several neurodevelopment, muscle, and detoxification proteins, but these have yet to be validated. These results provide insights into agriculture as a stressor for bumblebees, and signal for conservation action in light of ongoing anthropogenic changes.

19.
Pathogens ; 10(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451508

RESUMO

Honey bees, and pollinators in general, play a major role in the health of ecosystems. There is a consensus about the steady decrease in pollinator populations, which raises global ecological concern. Several drivers are implicated in this threat. Among them, honey bee pathogens are transmitted to other arthropods populations, including wild and managed pollinators. The western honey bee, Apis mellifera, is quasi-globally spread. This successful species acted as and, in some cases, became a maintenance host for pathogens. This systematic review collects and summarizes spillover cases having in common Apis mellifera as the mainteinance host and some of its pathogens. The reports are grouped by final host species and condition, year, and geographic area of detection and the co-occurrence in the same host. A total of eighty-one articles in the time frame 1960-2021 were included. The reported spillover cases cover a wide range of hymenopteran host species, generally living in close contact with or sharing the same environmental resources as the honey bees. They also involve non-hymenopteran arthropods, like spiders and roaches, which are either likely or unlikely to live in close proximity to honey bees. Specific studies should consider host-dependent pathogen modifications and effects on involved host species. Both the plasticity of bee pathogens and the ecological consequences of spillover suggest a holistic approach to bee health and the implementation of a One Health approach.

20.
Vet Sci ; 8(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201628

RESUMO

The deformed wing virus (DWV) is one of the most common honey bee pathogens. The virus may also be detected in other insect species, including Bombus terrestris adults from wild and managed colonies. In this study, individuals of all stages, castes, and sexes were sampled from three commercial colonies exhibiting the presence of deformed workers and analysed for the presence of DWV. Adults (deformed individuals, gynes, workers, males) had their head exscinded from the rest of the body and the two parts were analysed separately by RT-PCR. Juvenile stages (pupae, larvae, and eggs) were analysed undissected. All individuals tested positive for replicative DWV, but deformed adults showed a higher number of copies compared to asymptomatic individuals. Moreover, they showed viral infection in their heads. Sequence analysis indicated that the obtained DWV amplicons belonged to a strain isolated in the United Kingdom. Further studies are needed to characterize the specific DWV target organs in the bumblebees. The result of this study indicates the evidence of DWV infection in B. terrestris specimens that could cause wing deformities, suggesting a relationship between the deformities and the virus localization in the head. Further studies are needed to define if a specific organ could be a target in symptomatic bumblebees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA