RESUMO
This research studied the phenolic content compared with the antioxidant properties of various O. vulgare (Lamiaceae) cultivars grown in Poland. The research results in this paper indicate that the dominant ingredient in all oregano cultivars was rosmarinic acid, known for its strong antioxidant properties. The highest amounts of rosmarinic acid (87.16 ± 4.03 mg/g dm) were identified in the O. vulgare spp. hirtum (Link) Ietsw. Other metabolites identified in the studied extracts include luteolin O-di-glucuronide-O-di-pentoside (30.79 ± 0.38 mg/g dm in the 'Aureum' cultivar), 4'-O-glucopyranosyl-3', 4'-dihydroxy benzyl-protocatechuate (19.84 ± 0.60 mg/g dm in the 'Margerita' cultivar), and p-coumaroyl-triacetyl-hexoside (25.44 ± 0.18 mg/g dm in the 'Margerita' cultivar). 'Hot & spicy' and 'Margerita' cultivars were characterized by the highest activity in eliminating OH⢠and O2â¢- radicals. Extracts from Greek oregano had the highest ability to scavenge DPPH radicals and chelate iron ions. This research has also provided new evidence that oregano has anti-migratory, cytotoxic properties and influences the viability of gastric cancer cells (the highest cytotoxicity was attributed to the 'Hot & spicy' cultivar, which performed the worst in antioxidant properties tests). Extracts from the tested cultivars at a concentration of 0.625% effectively inhibited the growth of S. aureus and P. aeruginosa bacteria. It seems that the oregano grown in Poland is of good quality and can be successfully grown on a large scale if the appropriate use is found.
Assuntos
Antioxidantes , Origanum , Extratos Vegetais , Origanum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Polônia , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Fenóis/farmacologia , Fenóis/análise , Fenóis/química , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/análise , Antibacterianos/farmacologia , Antibacterianos/química , Depsídeos/farmacologia , Depsídeos/química , Ácido Rosmarínico , Linhagem Celular TumoralRESUMO
The purpose of this study was to characterize ethanol extracts from leaves and flowers of two ecotypes (PL-intended for industrial plantations and KC-intended for cut flowers) of Lavandula angustifolia Mill. The plant was cultivated in 2019 in southern Poland as part of a long-term research plan to develop new varieties resistant to difficult environmental conditions. The collected leaves and flowers were used to prepare ethanol extracts, which were then analyzed in terms of phytochemical composition and antioxidant, bactericidal, and fungicidal properties. Using UPLC techniques, 22 compounds belonging to phenolic acids and flavonoids were identified. UPLC test results indicated that ethanol extracts from leaves and flowers differ in phytochemical composition. Lower amounts of phenolic acids and flavonoids were identified in leaf extracts than in flower extracts. The predominant substances in the flower extracts were rosmarinic acid (829.68-1229.33 µg/g), ferulic acid glucoside III (810.97-980.55 µg/g), and ferulic acid glucoside II (789.30-885.06 µg/g). Ferulic acid glucoside II (3981.95-6561.19 µg/g), ferulic acid glucoside I (2349.46-5503.81 µg/g), and ferulic acid glucoside III (1303.84-2774.17 µg/g) contained the highest amounts in the ethanol extracts of the leaves. The following substances were present in the extracts in trace amounts or at low levels: apigenin, kaempferol, and caftaric acid. Leaf extracts of the PL ecotype quantitatively (µg/g) contained more phytochemicals than leaf extracts of the KC ecotype. The results obtained in this study indicate that antioxidant activity depends on the ecotype. Extracts from the PL ecotype have a better ability to eliminate free radicals than extracts from the KC ecotype. At the same time, it was found that the antioxidant activity (total phenolic content, ABTSâ¢+, DPPHâ¢, and FRAP) of PL ecotype leaf extracts was higher (24.49, 177.75, 164.88, and 89.10 µmol (TE)/g) than that determined in flower extracts (15.84, 125.05, 82.35, and 54.64 µmol (TE)/g). The test results confirmed that leaf and flower extracts, even at low concentrations (0.313-0.63%), significantly inhibit the growth of selected Gram-negative and Gram-positive bacteria and Candida yeasts. Inhibition of mold growth was observed at a dose extract of at least 1 mL/100 mL.
Assuntos
Antioxidantes , Ecótipo , Flores , Lavandula , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Lavandula/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Antioxidantes/química , Antioxidantes/farmacologia , Flores/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Flavonoides/química , Flavonoides/análise , Flavonoides/farmacologia , Cromatografia Líquida de Alta PressãoRESUMO
Lavender is a valued plant due to its cosmetic, perfumery, culinary, and health benefits. A wide range of applications is related to the composition of bioactive compounds, the quantity and quality of which is determined by various internal and external factors, i.e., variety, morphological part of the plant, and climatic and soil conditions during vegetation. In the presented work, the characterization of antimicrobial properties as well as the qualitative and quantitative assessment of bioactive compounds in the form of polyphenols in ethanol extracts from leaves and flowers of Lavandula angustifolia Mill. intended for border hedges, cultivated in the region of southern Poland, were determined. The composition of the fraction of volatile substances and antioxidant properties were also assessed. The conducted research shows that extracts from leaves and flowers significantly affected the viability of bacterial cells and the development of mold fungi. A clear decrease in the viability of bacteria and C. albicans cells was shown in the concentration of 0.32% of extracts. Leaf extracts were characterized by a much higher content of polyphenols and antioxidant properties than flower extracts. The composition of volatiles measured by GC-MS was significantly different between the extracts. Linalyl acetate and ocimene isomers mix dominated in flower extracts, whereas coumarin, γ-cadinene, and 7-methoxycoumarin were identified as dominant in leaf extracts.
Assuntos
Anti-Infecciosos , Lavandula , Antioxidantes/farmacologia , Polônia , Anti-Infecciosos/farmacologia , Candida albicans , Extratos Vegetais/farmacologiaRESUMO
This study explores the possibilities of utilisation of coniferous bark as a filler in wood-polymer composites (WPCs), its impact on properties such as the modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling (TS) and water absorption (WA) after 2 h and 24 h of immersion in water and the significance of this impact compared to other factors. Six variants of bark-polylactic acid (PLA) WPCs were manufactured, differentiated by their filler content and filler particle size. As a comparison, analogous composites filled with coniferous sawdust were also manufactured. Bark-filled composites were characterised by lower TS and WA after both 2 h and 24 h of immersion, as well as lower water contact angles and surface free energy. The bark filler decreased the composites' MORs and MOEs, while greater differences were noticed for variants filled with small particles. The type of filler was the second most important factor contributing to variance in this study, with the filler content being the most important one.
RESUMO
Image analysis is becoming increasingly popular in many industries. Its use is perfect for, among other things, assessing the quality of products on or off the production line. Highly automated, high-performance systems can be used for this purpose. However, there are situations in which automated vision systems cannot be used on the production line due to the specific nature of the process. One such situation is testing the resistance of paint applied to glass when washing in automatic dishwashers. It is carried out outside the production line, and typical production vision systems are not used here. An attempt was made to develop a cheap and easy-to-implement research method enabling quantitative measurement of paint loss on glass when testing the coating's resistance to automatic washing. For this purpose, analysis of images taken during the study was carried out. The developed method is based on taking a series of photos of the tested object between each stage of the wash resistance test. The obtained photographic material is then analyzed by measuring the size of paint losses expressed in the number of pixels. Then, the percentage of paint loss is calculated. This method is cheap to implement and highly accurate. Statistical analysis of the results confirmed the method's accuracy at 98%.
RESUMO
In this work, pine and birch wood were modified by graphene oxide using a single vacuum impregnation method. The research results indicate that the impregnation of wood with graphene oxide increases the crystallinity of cellulose in both pine and birch wood, and the increase in crystallinity observed in the case of birch was more significant than in the case of pine. FT-IR analyses of pine samples impregnated with graphene oxide showed changes in intensity in the absorption bands of 400-600, 700-1500 cm-1, and 3200-3500 cm-1 and a peak separation of 1102 cm-1, which may indicate new C-O-C connections. In the case of birch, only some differences were noticed related to the vibrations of the OH group. The proposed modification also affects changes in the color of the wood surface, with earlywood containing more graphene oxide than latewood. Analysis of scanning electron microscope images revealed that graphene oxide adheres flat to the cell wall. Considering the differences in the anatomical structure of both wood species, the research showed a statistically significant difference in water absorption and retention of graphene oxide in wood cells. Graphene oxide does not block the flow of water in the wood, as evidenced by the absorbability of the working liquid at the level of 580-602 kg/m3, which corresponds to the value of pure water absorption by wood in the impregnation method using a single negative pressure. In this case, higher graphene oxide retention values were obtained for pine wood.
RESUMO
Reducing the density of wood-based materials is a desirable research direction in the development of the wood-based materials sector. Even though lightweight wooden particleboards have been commercially available for many years, they still have a number of disadvantages, especially their low strength parameters. The aim of this paper was to determine the possibility of producing particleboards of reduced density for use in the furniture industry, as a result of using expanded polystyrene and two types of microspheres (expanded and unexpanded) to modify the core layer of three-layer particleboards. Analysis of the results of testing the particleboards' properties when using various types of modifiers (expanded and unexpanded fillers), urea formaldehyde (UF) glue content (high: 10%/12% and low: 8%/10%), various glue-dosing methods, and different particle sizes, allows us to conclude that the most satisfactory effect was found when using EPS. One partly positive effect was observed when using the Expancel-type 031 DU 40 as a filler; therefore, it is recommended that research be continued in this area. Using microspheres that have not been used before as a filler in the production of wood-based panels is the novelty of the presented research. The proposed technology has potential for application in the industry.
RESUMO
Although lightweight particleboards have been commercially available for years, they still have a number of disadvantages, including difficulty to process, brittleness, low impact strength, and other mechanical resistance. The aim of the paper was to determine the possibility of producing particleboards of reduced density (dedicated for furniture industry) as a result of using blowing agents from the group of hydrazides, dicarboxamides, or tetrazoles, which were modifiers of the adhesive resin used for bonding the particles of the core layer of three-layer particleboards. The concept presents the possibility of producing low-density particleboards in a standard technological process by modifying the adhesive resin, which has not been practiced by others until now. Analysis of the results of testing the particleboards properties with various types of modifiers (blowing agents), glue content (high 10%/12% and low 8%/10%), differing in glue dosing method, and different particle sizes allowed concluding that the most satisfactory effect was found in particleboards made of the variant modified with p-toluenesulfonyl hydrazide. This variant was characterised by the highest mechanical properties (bending strength, modulus elasticity, and internal bond strength) with high dimensional stability. The presented technology proposal can be applied in the industry.
RESUMO
The study aimed to determine the suitability of agricultural lignocellulosic biomass in the form of vine pruning waste for particleboard production. Two variants of particleboards with densities of 650 kg/m3 and 550 kg/m3 containing a varied amount of vine pruning waste (0, 25, 50 and 100%) were evaluated. The strength (MOR, MOE and IB), thickness swelling and water absorption after immersion in water for 2 and 24 h were tested. The results revealed that vine pruning waste affected the board thickening and reduced strength properties. Boards with a 50% share of waste met the minimum requirements of strength properties specified in the EN 312 standard for boards with a density of 650 kg/m3. However, boards with a density of 550 kg/m3 entirely made with vine pruning waste met the minimum requirements of strength properties of the EN 16368 standard. Moreover, the pruned material reduced axial forces during drilling, swelling and water absorption.
RESUMO
This paper presents the results of research on selected mechanical and physical properties of polyethylene membranes containing 50% of the plant fraction obtained as waste from an edible oil press. The produced biomembranes were characterized by low tensile strength (2.02-4.28 MPa). The addition of plant material will not adversely affect the barrier properties such as water vapor permeability or the contact angle. Additionally, there was a discoloration of the characteristics affecting the shrinkage of the membrane. The presence of the plant component clearly lowered the shrinkage of the material. This research is important and provides valuable knowledge on the possibilities of using plant waste and the direction of the potential application of the materials produced with their use.
RESUMO
Due to the content of lignocellulosic particles, wood plastic composites (WPC) composites can be attacked by both domestic and mold fungi. Household fungi reduce the mechanical properties of composites, while mold fungi reduce the aesthetics of products by changing their color and surface decomposition of the wood substance. As part of this study, the impact of lignocellulosic fillers in the form of sawdust and bark in poly (lactic acid) (PLA)-based biocomposites on their susceptibility to mold growth was determined. The evaluation of the samples fouled with mold fungi was performed by computer analysis of the image. For comparison, tests were carried out on analogous high-density polyethylene (HDPE) composites. Three levels of composites' filling were used with two degrees of comminution of lignocellulosic fillers and the addition of bonding aids to selected variants. The composites were produced in two stages employing extrusion and flat pressing. The research revealed that PLA composites were characterized by a higher fouling rate by Aspergillus niger Tiegh fungi compared to HDPE composites. In the case of HDPE composites. The type of filler (bark, sawdust) affected this process much more in the case of HDPE composites than for PLA composites. In addition, the use of filler with smaller particles enhanced the fouling process.