Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 285(28): 21581-9, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20430894

RESUMO

Chronic oxidative stress results in decreased responsiveness to insulin, eventually leading to diabetes and cardiovascular disease. Activation of the JNK signaling pathway can mediate many of the effects of stress on insulin resistance through inhibitory phosphorylation of insulin receptor substrate 1. By contrast, exercise, which acutely increases oxidative stress in the muscle, improves insulin sensitivity and glucose tolerance in patients with Type 2 diabetes. To elucidate the mechanism underlying the contrasting effects of acute versus chronic oxidative stress on insulin sensitivity, we used a cellular model of insulin-resistant muscle to induce either chronic or acute oxidative stress and investigate their effects on insulin and JNK signaling. Chronic oxidative stress resulted in increased levels of phosphorylated (activated) JNK in the cytoplasm, whereas acute oxidative stress led to redistribution of JNK-specific phosphatase MKP7 from the nucleus into the cytoplasm, reduction in cytoplasmic phospho-JNK, and a concurrent accumulation of phospho-JNK in the nucleus. Acute oxidative stress restored normal insulin sensitivity and glucose uptake in insulin-resistant muscle cells, and this effect was dependent on MKP7. We propose that the contrasting effects of acute and chronic stress on insulin sensitivity are driven by changes in subcellular distribution of MKP7 and activated JNK.


Assuntos
Citoplasma/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Regulação Enzimológica da Expressão Gênica , Resistência à Insulina , MAP Quinase Quinase 4/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Animais , Citoplasma/enzimologia , Desoxiglucose/farmacocinética , Diabetes Mellitus Tipo 2/metabolismo , Ativação Enzimática , Insulina/metabolismo , Camundongos , Modelos Biológicos , Músculos/enzimologia , Estresse Oxidativo , Transdução de Sinais
2.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951176

RESUMO

Fibroblast growth factor (FGF) 21 is a member of the FGF family of proteins. The biological activity of FGF21 was first shown to induce insulin-independent glucose uptake in adipocytes through the GLUT1 transporter. Subsequently, it was shown to have effects on the liver to increase fatty acid oxidation. FGF21 treatment provides beneficial metabolic effects in both animal models and patients with obesity, type 2 diabetes mellitus (T2D) and/or fatty liver disease. In this paper, we revisited the original finding and found that insulin-independent glucose uptake in adipocytes is preserved in the presence of an insulin receptor antagonist. Using a 40-kDa PEGylated (PEG) and half-life extended form of FGF21 (FGF21-PEG), we extended these in vitro results to 2 different mouse models of diabetes. FGF21-PEG normalized plasma glucose in streptozotocin-treated mice, a model of type 1 diabetes (T1D), without restoring pancreatic ß-cell function. FGF21-PEG also normalized plasma glucose levels and improved glucose tolerance in mice chronically treated with an insulin competitive insulin receptor antagonist, a model of autoimmune/type-B insulin resistance. These data extend the pharmacological potential of FGF21 beyond the settings of T2D, fatty liver, and obesity.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Fatores de Crescimento de Fibroblastos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células HEK293 , Humanos , Hiperglicemia/sangue , Hiperglicemia/etiologia , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Obesidade/complicações , Obesidade/patologia , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/fisiologia , Estreptozocina
3.
Mol Cell Biol ; 24(12): 5447-58, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15169906

RESUMO

Glucose homeostasis is controlled in part by regulation of glucose uptake into muscle and adipose tissue. Intracellular membrane vesicles containing the GLUT4 glucose transporter move towards the cell cortex in response to insulin and then fuse with the plasma membrane. Here we show that the fusion step is retarded by the inhibition of phosphatidylinositol (PI) 3-kinase. Treatment of insulin-stimulated 3T3-L1 adipocytes with the PI 3-kinase inhibitor LY294002 causes the accumulation of GLUT4-containing vesicles just beneath the cell surface. This accumulation of GLUT4-containing vesicles near the plasma membrane prior to fusion requires an intact cytoskeletal network and the unconventional myosin motor Myo1c. Remarkably, enhanced Myo1c expression under these conditions causes extensive membrane ruffling and overrides the block in membrane fusion caused by LY294002, restoring the display of GLUT4 on the cell exterior. Ultrafast microscopic analysis revealed that insulin treatment leads to the mobilization of GLUT4-containing vesicles to these regions of Myo1c-induced membrane ruffles. Thus, localized membrane remodeling driven by the Myo1c motor appears to facilitate the fusion of exocytic GLUT4-containing vesicles with the adipocyte plasma membrane.


Assuntos
Fusão de Membrana/fisiologia , Proteínas Musculares , Miosinas/fisiologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Exocitose , Transportador de Glucose Tipo 4 , Insulina/farmacologia , Camundongos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/fisiologia , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Morfolinas/farmacologia , Miosina Tipo I , Miosinas/genética , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
ACS Med Chem Lett ; 5(10): 1114-8, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25313322

RESUMO

The identification of highly potent and orally bioavailable GPR39 agonists is reported. Compound 1, found in a phenotypic screening campaign, was transformed into compound 2 with good activity on both the rat and human GPR39 receptor. This compound was further optimized to improve ligand efficiency and pharmacokinetic properties to yield GPR39 agonists for the potential oral treatment of type 2 diabetes. Thus, compound 3 is the first potent GPR39 agonist (EC50s ≤ 1 nM for human and rat receptor) that is orally bioavailable in mice and robustly induced acute GLP-1 levels.

5.
J Biol Chem ; 280(44): 36946-51, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16131485

RESUMO

Regulated exocytosis in adipocytes mediates key functions, exemplified by insulin-stimulated secretion of peptides such as adiponectin and recycling of intracellular membranes containing GLUT4 glucose transporters to the cell surface. Using a proteomics approach, the v-SNARE Vti1a (vps10p tail interacting 1a) was identified by mass spectrometry in purified GLUT4-containing membranes. Insulin treatment of 3T3-L1 adipocytes decreased the amounts of both Vti1a and GLUT4 in these membranes, confirming that Vti1a is a component of insulin-sensitive GLUT4-containing vesicles. In the basal state, endogenous Vti1a colocalizes exclusively with perinuclear GLUT4. Although Vti1a has previously been reported to be a v-SNARE localized in the trans-Golgi network, treatment with brefeldin A failed to significantly modify Vti1a or GLUT4 localization while completely dispersing Golgi and trans-Golgi network marker proteins. Furthermore, depletion of Vti1a protein in cultured adipocytes through small interfering RNA-based gene silencing significantly inhibited both adiponectin secretion and insulin-stimulated deoxyglucose uptake. Taken together, these results suggest that the v-SNARE Vti1a may regulate a step common to both GLUT4 and Acrp30 trafficking in 3T3-L1 adipocytes.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteínas Qb-SNARE/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adiponectina/metabolismo , Animais , Transporte Biológico , Imunofluorescência , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Proteômica , Proteínas Qb-SNARE/antagonistas & inibidores , Proteínas Qb-SNARE/genética , RNA Interferente Pequeno/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Rede trans-Golgi
6.
J Biol Chem ; 277(1): 509-15, 2002 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-11694514

RESUMO

Recruitment of intracellular glucose transporter 4 (GLUT4) to the plasma membrane of fat and muscle cells in response to insulin requires phosphatidylinositol (PI) 3-kinase as well as a proposed PI 3-kinase-independent pathway leading to activation of the small GTPase TC10. Here we show that in cultured adipocytes insulin causes acute cortical localization of the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related protein-3 (Arp3) as well as cortical F-actin polymerization by a mechanism that is insensitive to the PI 3-kinase inhibitor wortmannin. Expression of the dominant inhibitory N-WASP-DeltaWA protein lacking the Arp and actin binding regions attenuates the cortical F-actin rearrangements by insulin in these cells. Remarkably, the N-WASP-DeltaWA protein also inhibits insulin action on GLUT4 translocation, indicating dependence of GLUT4 recycling on N-WASP-directed cortical F-actin assembly. TC10 exhibits sequence similarity to Cdc42 and has been reported to bind N-WASP. We show the inhibitory TC10 (T31N) mutant, which abrogates insulin-stimulated GLUT4 translocation and glucose transport, also inhibits both cortical localization of N-WASP and F-actin formation in response to insulin. These findings reveal that N-WASP likely functions downstream of TC10 in a PI 3-kinase-independent insulin signaling pathway to mobilize cortical F-actin, which in turn promotes GLUT4 responsiveness to insulin.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto , Insulina/farmacologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Actinas/análise , Transporte Biológico , Transportador de Glucose Tipo 4 , Humanos , Proteínas do Tecido Nervoso/análise , Proteína Neuronal da Síndrome de Wiskott-Aldrich
7.
J Biol Chem ; 279(11): 10593-605, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14676205

RESUMO

Here we identified two novel proteins denoted EH domain protein 2 (EHD2) and EHD2-binding protein 1 (EHBP1) that link clathrin-mediated endocytosis to the actin cytoskeleton. EHD2 contains an N-terminal P-loop and a C-terminal EH domain that interacts with NPF repeats in EHBP1. Disruption of EHD2 or EHBP1 function by small interfering RNA-mediated gene silencing inhibits endocytosis of transferrin into EEA1-positive endosomes as well as GLUT4 endocytosis into cultured adipocytes. EHD2 localizes with cortical actin filaments, whereas EHBP1 contains a putative actin-binding calponin homology domain. High expression of EHD2 or EHBP1 in intact cells mediates extensive actin reorganization. Thus EHD2 appears to connect endocytosis to the actin cytoskeleton through interactions of its N-terminal domain with membranes and its C-terminal EH domain with the novel EHBP1 protein.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Citoesqueleto/metabolismo , Endocitose , Células 3T3-L1 , Actinas/química , Adipócitos/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Northern Blotting , Western Blotting , Células COS , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , DNA Complementar/metabolismo , Endossomos/metabolismo , Inativação Gênica , Glucose/metabolismo , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Ratos , Rodaminas/química , Fatores de Tempo , Distribuição Tecidual , Transfecção , Transferrina/química , Transferrina/metabolismo
8.
Nature ; 420(6917): 821-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12490950

RESUMO

Insulin stimulates glucose uptake in muscle and adipocytes by signalling the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. The translocation of GLUT4 may involve signalling pathways that are both independent of and dependent on phosphatidylinositol-3-OH kinase (PI(3)K). This translocation also requires the actin cytoskeleton, and the rapid movement of GLUT4 along linear tracks may be mediated by molecular motors. Here we report that the unconventional myosin Myo1c is present in GLUT4-containing vesicles purified from 3T3-L1 adipocytes. Myo1c, which contains a motor domain, three IQ motifs and a carboxy-terminal cargo domain, is highly expressed in primary and cultured adipocytes. Insulin enhances the localization of Myo1c with GLUT4 in cortical tubulovesicular structures associated with actin filaments, and this colocalization is insensitive to wortmannin. Insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane is augmented by the expression of wild-type Myo1c and inhibited by a dominant-negative cargo domain of Myo1c. A decrease in the expression of endogenous Myo1c mediated by small interfering RNAs inhibits insulin-stimulated uptake of 2-deoxyglucose. Thus, myosin Myo1c functions in a PI(3)K-independent insulin signalling pathway that controls the movement of intracellular GLUT4-containing vesicles to the plasma membrane.


Assuntos
Insulina/farmacologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Miosinas/metabolismo , Células 3T3 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/ultraestrutura , Motivos de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Glucose/metabolismo , Transportador de Glucose Tipo 4 , Camundongos , Miosina Tipo I , Miosinas/química , Miosinas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA