Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 143(7): 2039-2057, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32577763

RESUMO

NMDA receptors play crucial roles in excitatory synaptic transmission. Rare variants in GRIN2A encoding the GluN2A subunit are associated with a spectrum of disorders, ranging from mild speech and language delay to intractable neurodevelopmental disorders, including but not limited to developmental and epileptic encephalopathy. A de novo missense variant, p.Ser644Gly, was identified in a child with this disorder, and Grin2a knock-in mice were generated to model and extend understanding of this intractable childhood disease. Homozygous and heterozygous mutant mice exhibited altered hippocampal morphology at 2 weeks of age, and all homozygotes exhibited lethal tonic-clonic seizures by mid-third week. Heterozygous adults displayed susceptibility to induced generalized seizures, hyperactivity, repetitive and reduced anxiety behaviours, plus several unexpected features, including significant resistance to electrically-induced limbic seizures and to pentylenetetrazole induced tonic-clonic seizures. Multielectrode recordings of neuronal networks revealed hyperexcitability and altered bursting and synchronicity. In heterologous cells, mutant receptors had enhanced NMDA receptor agonist potency and slow deactivation following rapid removal of glutamate, as occurs at synapses. NMDA receptor-mediated synaptic currents in heterozygous hippocampal slices also showed a prolonged deactivation time course. Standard anti-epileptic drug monotherapy was ineffective in the patient. Introduction of NMDA receptor antagonists was correlated with a decrease in seizure burden. Chronic treatment of homozygous mouse pups with NMDA receptor antagonists significantly delayed the onset of lethal seizures but did not prevent them. These studies illustrate the power of using multiple experimental modalities to model and test therapies for severe neurodevelopmental disorders, while revealing significant biological complexities associated with GRIN2A developmental and epileptic encephalopathy.


Assuntos
Modelos Animais de Doenças , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Receptores de N-Metil-D-Aspartato/genética , Animais , Dextrometorfano/uso terapêutico , Epilepsia Generalizada/patologia , Técnicas de Introdução de Genes , Humanos , Lactente , Masculino , Memantina/uso terapêutico , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
2.
PLoS Comput Biol ; 14(10): e1006506, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273353

RESUMO

Here we present an open-source R package 'meaRtools' that provides a platform for analyzing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal networks monitored with MEAs are now being widely used to characterize in vitro models of neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plotting of multiple MEA recordings with multiple genotypes and treatments. meaRtools functionality covers novel solutions for spike train analysis, including algorithms to assess electrode cross-correlation using the spike train tiling coefficient (STTC), mutual information, synchronized bursts and entropy within cultured wells. Also integrated is a solution to account for bursts variability originating from mixed-cell neuronal cultures. The package provides a statistical platform built specifically for MEA data that can combine multiple MEA recordings and compare extracted features between different genetic models or treatments. We demonstrate the utilization of meaRtools to successfully identify epilepsy-like phenotypes in neuronal networks from Celf4 knockout mice. The package is freely available under the GPL license (GPL> = 3) and is updated frequently on the CRAN web-server repository. The package, along with full documentation can be downloaded from: https://cran.r-project.org/web/packages/meaRtools/.


Assuntos
Potenciais de Ação/fisiologia , Biologia Computacional/métodos , Neurônios/fisiologia , Software , Algoritmos , Animais , Células Cultivadas , Eletrofisiologia , Camundongos , Camundongos Knockout , Microeletrodos
3.
Rep Prog Phys ; 81(2): 026601, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29303117

RESUMO

We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.


Assuntos
Eletrônica/métodos , Proteínas , Animais , Biomimética , Transporte de Elétrons , Humanos , Proteínas/química , Proteínas/metabolismo
4.
Nanotechnology ; 26(15): 155102, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25804257

RESUMO

Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport (ETp) depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of ETp processes in the enzyme, in addition to occupying the active site.


Assuntos
Compostos de Anilina/química , Sistema Enzimático do Citocromo P-450/química , Proteínas Imobilizadas/química , Domínio Catalítico , Citocromo P-450 CYP2C9/metabolismo , Dapsona/química , Condutividade Elétrica , Transporte de Elétrons , Elétrons , Flurbiprofeno/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Silício/química , Sulfafenazol/química
5.
J Am Chem Soc ; 135(10): 3834-40, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23427827

RESUMO

Electron transfer in cytochrome P450 enzymes is a fundamental process for activity. It is difficult to measure electron transfer in these enzymes because under the conditions typically used they exist in a variety of states. Using nanotechnology-based techniques, gold conducting nanopillars were constructed in an indexed array. The P450 enzyme CYP2C9 was attached to each of these nanopillars, and conductivity measurements made using conducting probe atomic force microscopy under constant force conditions. The conductivity measurements were made on CYP2C9 alone and with bound substrates, a bound substrate-effector pair, and a bound inhibitor. Fitting of the data with the Poole-Frenkel model indicates a correlation between the barrier height for electron transfer and the ease of CYP2C9-mediated metabolism of the bound substrates, though the spin state of iron is not well correlated. The approach described here should have broad application to the measurement of electron transfer in P450 enzymes and other metalloenzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Nanoestruturas/química , Sistema Enzimático do Citocromo P-450/química , Transporte de Elétrons , Estrutura Molecular , Especificidade por Substrato
6.
Cell Rep ; 33(4): 108303, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113364

RESUMO

Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.


Assuntos
Potenciais de Ação/genética , Epilepsia/genética , Neurônios GABAérgicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , Convulsões/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA