Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 19(1): 60, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715823

RESUMO

BACKGROUND: Falls are a common complication experienced after a stroke and can cause serious detriments to physical health and social mobility, necessitating a dire need for intervention. Among recent advancements, wearable airbag technology has been designed to detect and mitigate fall impact. However, these devices have not been designed nor validated for the stroke population and thus, may inadequately detect falls in individuals with stroke-related motor impairments. To address this gap, we investigated whether population-specific training data and modeling parameters are required to pre-detect falls in a chronic stroke population. METHODS: We collected data from a wearable airbag's inertial measurement units (IMUs) from individuals with (n = 20 stroke) and without (n = 15 control) history of stroke while performing a series of falls (842 falls total) and non-falls (961 non-falls total) in a laboratory setting. A leave-one-subject-out crossvalidation was used to compare the performance of two identical machine learned models (adaptive boosting classifier) trained on cohort-dependent data (control or stroke) to pre-detect falls in the stroke cohort. RESULTS: The average performance of the model trained on stroke data (recall = 0.905, precision = 0.900) had statistically significantly better recall (P = 0.0035) than the model trained on control data (recall = 0.800, precision = 0.944), while precision was not statistically significantly different. Stratifying models trained on specific fall types revealed differences in pre-detecting anterior-posterior (AP) falls (stroke-trained model's F1-score was 35% higher, P = 0.019). Using activities of daily living as non-falls training data (compared to near-falls) significantly increased the AUC (Area under the receiver operating characteristic) for classifying AP falls for both models (P < 0.04). Preliminary analysis suggests that users with more severe stroke impairments benefit further from a stroke-trained model. The optimal lead time (time interval pre-impact to detect falls) differed between control- and stroke-trained models. CONCLUSIONS: These results demonstrate the importance of population sensitivity, non-falls data, and optimal lead time for machine learned pre-impact fall detection specific to stroke. Existing fall mitigation technologies should be challenged to include data of neurologically impaired individuals in model development to adequately detect falls in other high fall risk populations. Trial registration https://clinicaltrials.gov/ct2/show/NCT05076565 ; Unique Identifier: NCT05076565. Retrospectively registered on 13 October 2021.


Assuntos
Air Bags , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Humanos , Acidente Vascular Cerebral/complicações , Tecnologia
2.
Digit Biomark ; 5(2): 167-175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34723069

RESUMO

INTRODUCTION: Difficulty swallowing (dysphagia) occurs frequently in patients with neurological disorders and can lead to aspiration, choking, and malnutrition. Dysphagia is typically diagnosed using costly, invasive imaging procedures or subjective, qualitative bedside examinations. Wearable sensors are a promising alternative to noninvasively and objectively measure physiological signals relevant to swallowing. An ongoing challenge with this approach is consolidating these complex signals into sensitive, clinically meaningful metrics of swallowing performance. To address this gap, we propose 2 novel, digital monitoring tools to evaluate swallows using wearable sensor data and machine learning. METHODS: Biometric swallowing and respiration signals from wearable, mechano-acoustic sensors were compared between patients with poststroke dysphagia and nondysphagic controls while swallowing foods and liquids of different consistencies, in accordance with the Mann Assessment of Swallowing Ability (MASA). Two machine learning approaches were developed to (1) classify the severity of impairment for each swallow, with model confidence ratings for transparent clinical decision support, and (2) compute a similarity measure of each swallow to nondysphagic performance. Task-specific models were trained using swallow kinematics and respiratory features from 505 swallows (321 from patients and 184 from controls). RESULTS: These models provide sensitive metrics to gauge impairment on a per-swallow basis. Both approaches demonstrate intrasubject swallow variability and patient-specific changes which were not captured by the MASA alone. Sensor measures encoding respiratory-swallow coordination were important features relating to dysphagia presence and severity. Puree swallows exhibited greater differences from controls than saliva swallows or liquid sips (p < 0.037). DISCUSSION: Developing interpretable tools is critical to optimize the clinical utility of novel, sensor-based measurement techniques. The proof-of-concept models proposed here provide concrete, communicable evidence to track dysphagia recovery over time. With refined training schemes and real-world validation, these tools can be deployed to automatically measure and monitor swallowing in the clinic and community for patients across the impairment spectrum.

3.
IEEE J Transl Eng Health Med ; 9: 4900311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665044

RESUMO

OBJECTIVE: Controlling the spread of the COVID-19 pandemic largely depends on scaling up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a solution to detect the presence of infections in the population, but the current paradigm requires collecting physiological data continuously and for long periods of time on each individual, which poses limitations in the context of rapid screening. Technology: Here, we propose a novel paradigm based on recording the physiological responses elicited by a short (~2 minutes) sequence of activities (i.e. "snapshot"), to detect symptoms associated with COVID-19. We employed a novel body-conforming soft wearable sensor placed on the suprasternal notch to capture data on physical activity, cardio-respiratory function, and cough sounds. RESULTS: We performed a pilot study in a cohort of individuals (n=14) who tested positive for COVID-19 and detected altered heart rate, respiration rate and heart rate variability, relative to a group of healthy individuals (n=14) with no known exposure. Logistic regression classifiers were trained on individual and combined sets of physiological features (heartbeat and respiration dynamics, walking cadence, and cough frequency spectrum) at discriminating COVID-positive participants from the healthy group. Combining features yielded an AUC of 0.94 (95% CI=[0.92, 0.96]) using a leave-one-subject-out cross validation scheme. Conclusions and Clinical Impact: These results, although preliminary, suggest that a sensor-based snapshot paradigm may be a promising approach for non-invasive and repeatable testing to alert individuals that need further screening.


Assuntos
COVID-19/fisiopatologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Adulto , Idoso , Área Sob a Curva , COVID-19/diagnóstico , Estudos de Casos e Controles , Tosse/diagnóstico , Exercício Físico , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Quarentena , Caminhada , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA