Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(6): e9685, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38356086

RESUMO

RATIONALE: High-resolution mass spectrometry (HRMS) has been demonstrated to be an alternative platform for quantitative analyses, identifying unknown compounds and gathering information for the elucidation of chemical structures. This work describes a method to detect 13 esters of testosterone (T) and 5 biomarkers in 0.1 mL of human serum using gas chromatography (GC) coupled to HRMS. METHODS: Analytes were extracted from serum after deproteinization and liquid-liquid extraction. The trimethylsilyl derivatives were analyzed using a gas chromatograph coupled to HRMS at low electron energy to minimize molecule fragmentation. The acquisition in profiling full-scan mode was applied with a resolving power of 30 000 at m/z 400. Linearity, lower limit of quantitation, and measurement uncertainty were assessed. Precision and accuracy were assessed at 0.5 and 2 ng/mL, respectively. Mass accuracy (MA) and mass extraction window (MEW) were also evaluated. RESULTS: T esters showed a linear response between 0.25 and 10 ng/mL (except for undecanoate, enanthate, and propionate that showed lineal responses between 0.5 and 10 ng/mL and isocaproate between 2 and 10 ng/mL); detection limits remained between 0.1 and 0.5 ng/mL and accuracy between 81% and 119%. The MA (MEW = 10 ppm) was maintained between -2.4 and 4.8 ppm. The biomarkers (T, androstenedione, dehydroepiandrosterone [DHEA], estradiol, and 17-OH-progesterone) showed a linear response within the evaluated range; quantification limits remained between 0.1 and 0.5 ng/mL (except for DHEA), the accuracy between 88% and 99%, and precision between 3.5% and 10.8%. Measurement uncertainties were found between 5.6% and 17.2%. MA (MEW = 3 ppm) was maintained between -0.47 and 0.12 ppm. CONCLUSIONS: The method to detect T esters and five endogenous biomarkers in serum using GC coupled to HRMS showed linear responses up to 10 ng/mL with adequate precision, accuracy, and uncertainties. It was possible to distinguish cholesterol from T-isocaproate based on the MEW of 10 ppm, preventing false positives. In addition, this method allows searching for other biomarkers and/or unknown metabolites and other ester forms not included here but at a later stage if necessary.


Assuntos
Ésteres , Testosterona , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Ésteres/análise , Espectrometria de Massas/métodos , Desidroepiandrosterona
2.
Arch Pharm (Weinheim) ; 357(6): e2300689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38400693

RESUMO

The phytosteroid ecdysterone is classified as an anabolic agent and has been included on the monitoring list of the World Anti-Doping Agency since 2020. Therefore, the consumption of food rich in ecdysterone, such as quinoa and spinach, is the focus of a lively debate. Thus, the urinary excretion of ecdysterone and its metabolites in humans was investigated following quinoa consumption alone and in combination with spinach. Eight participants (four male and four female) were included, and they ingested 368 ± 61 g cooked quinoa alone and in combination with 809 ± 115 g spinach after a washout. Post-administration urines were analyzed by LC-MS/MS. After intake of both preparations, ecdysterone and two metabolites were excreted in the urine. The maximum concentration of ecdysterone ranged from 0.44 to 5.5 µg/mL after quinoa and from 0.34 to 4.1 µg/mL after quinoa with spinach. The total urinary excreted amount as parent drug plus metabolites was 2.61 ± 1.1% following quinoa intake and 1.7 ± 0.9% in combination with spinach. Significant differences were found in the total urinary excreted amount of ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone. Only small portions of ecdysterone from quinoa and the combination with spinach were excreted in the urine, suggesting that both quinoa and spinach are poor sources of ecdysterone in terms of bioavailability.


Assuntos
Chenopodium quinoa , Spinacia oleracea , Chenopodium quinoa/química , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Espectrometria de Massas em Tandem , Cromatografia Líquida
3.
Biol Sport ; 41(2): 175-183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524822

RESUMO

We considered in this study the possibility of developing an indirect procedure for detecting myostatin inhibition/suppression, a practice that is prohibited as doping in sport. We have specifically considered the potential diagnostic utility of human serum myokines as indirect markers of myostatin inhibition. Myostatin, its main antagonist follistatin, and other myokines (follistatin-like 1, musclin, oncostatin, osteonectin, irisin, brain derived neurotrophic factor, and insulin-like growth factor-1) were selected as a panel of potential biomarkers whose levels may be altered following myostatine suppression. The serum levels of myostatin and of the nine myokines were measured in elite athletes of different age, sex, and sport discipline, and their cross correlation assessed by multivariate analysis. All myokines resulted to be measurable in human serum, except for musclin and irisine, whose levels were below the limits of quantitation in a reduced number of samples. Serum concentrations varied of different orders in magnitude (musclin and osteonectin < 1 ng/mL; follistatin, myostatine and irisine 1-5 ng/mL; brainderived neurotrophic factor, follistatin-like 1 and iinsulin-like growth factor-1 > 10 ng/mL), while no significant differences were found between female and male subjects, with the exceptions of follistatin-like 1 and musclin, showing a higher concentrations in females (p < 0.05). Levels of insulin-like growth factor 1 and brain derived neurotrophic factor were significantly higher in power athletes than in endurance ones. Multivariate statistics showed that musclin, follistatin-like 1 and oncostatin are more clustered and correlated to myostatin than other myokines, suggesting they could be considered as potential biomarkers of doping by myostatin inhibitors.

4.
Rapid Commun Mass Spectrom ; 37(14): e9532, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37147275

RESUMO

RATIONALE: The proposed metabolomic workflow, based on coupling high-resolution mass spectrometry with computational tools, can be an alternative strategy for metabolite detection and identification. This approach allows the extension of the investigation field to chemically different compounds, maximizing the information obtainable from the data and minimizing the time and resources required. METHODS: Urine samples were collected from five healthy volunteers before and after oral administration of 3ß-hydroxyandrost-5-ene-7,17-dione as a model compound and defining three excretion time intervals. Raw data were acquired in both positive and negative ionization modes using an Agilent Technologies 1290 Infinity II series HPLC coupled to a 6545 Accurate-Mass Quadrupole Time-of-Flight. They were then processed to align peak retention times with the same accurate mass, and the resulting data matrix was subjected to multivariate analysis. RESULTS: Multivariate analysis (PCA and PLS-DA models) demonstrated high similarity between samples belonging to the same collection time interval and clear discrimination between different excretion intervals. The blank and long excretion groups were distinguished, suggesting the presence of long excretion markers, which are of remarkable interest in anti-doping analyses. The correspondence of some significant features with metabolites reported in the literature confirmed the rationale and usefulness of the proposed metabolomic approach. CONCLUSIONS: The presented study proposes a metabolomics workflow for the early detection and characterization of drug metabolites by untargeted urinary analysis to reduce the range of substances still excluded from routine screening. Its application has detected minor steroid metabolites, as well as unexpected endogenous alterations, proving to be an alternative strategy that can allow gathering a more complete range of information in the antidoping field.


Assuntos
Metabolômica , Esteroides , Humanos , Fluxo de Trabalho , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Esteroides/urina
5.
Anal Bioanal Chem ; 415(24): 6117-6131, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566232

RESUMO

Insulin-like growth factor 1 analogues are prohibited in sport for their ability to enhance athletic performance in several sport disciplines. Their detection presents several analytical challenges, mainly due to the minimum required performance limits fixed by the World Anti-Doping Agency. Here, we are presenting analytical workflows to detect IGF-1 and its analogues in different biological matrices. Several off-line immunocapture techniques and protocols were comparatively evaluated. Separation and detection were performed by using standard flow reverse-phase liquid chromatography coupled to a time-of-flight mass spectrometer. The best recoveries were obtained using magnetic beads or pipette tips functionalized with protein A. The analytical workflows were fully validated for qualitative determinations: all the target analytes were clearly distinguishable from the interference of the matrices, with limits of detection and identification in the range of 0.05-0.30 ng/mL in urine and 0.5-2.0 ng/mL in serum/plasma. The extraction efficiency proved to be repeatable (CV% < 10) with recoveries higher than 50%. Intra- and inter-day precision were found to be smaller than 10 and 15%, respectively. The method was successfully applied to the analysis of authentic matrix samples containing the target peptides at the minimum required performance limits, proving that the method developed can be successfully applied to detect and identify IGF-1 analogues for doping control purposes in all the matrices selected. The analytical workflow developed here to detect the target peptides in different matrices can be readily implemented in anti-doping laboratories and has the potential to be adapted for the simultaneous analysis of different similarly sized peptide hormones of doping relevance.


Assuntos
Dopagem Esportivo , Fator de Crescimento Insulin-Like I , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Dopagem Esportivo/métodos , Fator de Crescimento Insulin-Like I/análise , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos
6.
J Sep Sci ; 46(7): e2200880, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739523

RESUMO

Supercritical fluid chromatography is proving to be a good separation and sample preparation tool for various analytical applications and, as such, has gained the attention of the anti-doping community. Here, the applicability of supercritical fluid chromatography hyphenated to tandem mass spectrometry for routine doping control analysis was tested. A multi-analyte method was developed to cover 197 drugs and metabolites that are prohibited in sport. More than 1000 samples were analyzed by applying a "dilute and inject" approach after hydrolysis of glucuronide metabolites. Additionally, a comparison with routinely used liquid chromatography-mass spectrometry was performed with 250 of the 1000 samples and a number of past positive anti-doping samples. It revealed some features where supercritical fluid chromatography-tandem mass spectrometry was found to be complementary or advantageous to liquid chromatography-mass spectrometry for anti-doping purposes, such as better retention of analytes that are poorly retained in reversed-phase liquid chromatography. Our results suggest that supercritical fluid chromatography-tandem mass spectrometry is sensitive (limit of detection <50% relevant minimum required performance level required by the World Anti-Doping Agency for anti-doping analysis), reproducible, robust, precise (analytes of interest area coefficient of variation <5%; retention time difference coefficient of variation <1%) and complementary to existing techniques currently used for routine analysis in the World Anti-Doping Agency accredited laboratories.


Assuntos
Cromatografia com Fluido Supercrítico , Dopagem Esportivo , Espectrometria de Massas em Tandem/métodos , Cromatografia com Fluido Supercrítico/métodos , Cromatografia Líquida , Cromatografia de Fase Reversa , Glucuronídeos , Detecção do Abuso de Substâncias/métodos
7.
Rapid Commun Mass Spectrom ; 36(2): e9217, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34738273

RESUMO

RATIONALE: This work demonstrates the high potential of combining high-resolution mass spectrometry with chemometric tools, using metabolomics as a guided tool for anti-doping analysis. The administration of 7-keto-DHEA was studied as a proof-of-concept of the effectiveness of the combination of knowledge-based and machine-learning approaches to differentiate the changes due to the athletic activities from those due to the recourse to doping substances and methods. METHODS: Urine samples were collected from five healthy volunteers before and after an oral administration by identifying three time intervals. Raw data were acquired by injecting less than 1 µL of derivatized samples into a model 8890 gas chromatograph coupled to a model 7250 accurate-mass quadrupole time-of-flight analyzer (both from Agilent Technologies), by using a low-energy electron ionization source; the samples were then preprocessed to align peak retention times with the same accurate mass. The resulting data table was subjected to multivariate analysis. RESULTS: Multivariate analysis showed a high similarity between the samples belonging to the same collection interval and a clear separation between the different excretion intervals. The discrimination between blank and long excretion groups may suggest the presence of long excretion markers, which are particularly significant in anti-doping analysis. Furthermore, matching the most significant features with some of the metabolites reported in the literature data demonstrated the rationality of the proposed metabolomics-based approach. CONCLUSIONS: The application of metabolomics tools as an investigation strategy could reduce the time and resources required to identify and characterize intake markers maximizing the information that can be extracted from the data and extending the research field by avoiding a priori bias. Therefore, metabolic fingerprinting of prohibited substance intakes could be an appropriate analytical approach to reduce the risk of false-positive/negative results, aiding in the interpretation of "abnormal" profiles and discrimination of pseudo-endogenous steroid intake in the anti-doping field.

8.
Biomed Chromatogr ; 36(5): e5344, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35064599

RESUMO

We present a liquid chromatography tandem mass spectrometry method for the simultaneous analysis of 16 endogenous steroids (androgens, estrogens, glucocorticoids and progestogens) in human serum. Samples (250 µl of matrix) were extracted with t-butylmethyl ether prior to LC-MS/MS analysis. The chromatographic separation was achieved on a reversed-phase column using a methanol-water gradient. The HPLC was coupled to a triple quadrupole mass spectrometer equipped with an electrospray ionization source with acquisition in multiple reaction monitoring mode. The method was validated using surrogate matrices and human serum samples. The specificity of the method was confirmed for all of the considered steroids; linearity was also assessed (R2 > 0.99, lack-of-fit test) in the ranges of concentrations investigated. The lower limits of quantification were in the range 10-400 pg/ml depending on the target steroid. Accuracy was in the range 85-115% for all target steroids except for the lower limit of quantitation levels where it was 80-120%. The extraction recovery was always >65%. No significant matrix effects were observed. To test the reliability of the method, the analysis of serum samples collected from 10 healthy subjects (5 M/5F) was performed. The present method can be used to identify the trajectories of deviation from the concentration normality ranges applied to disorders of the gonadal and adrenal axes.


Assuntos
Androgênios , Progestinas , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Estrogênios , Glucocorticoides , Humanos , Reprodutibilidade dos Testes , Esteroides , Espectrometria de Massas em Tandem/métodos
9.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887377

RESUMO

3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.


Assuntos
Canabinoides , Naftalenos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/química , Canabinoides/farmacologia , Humanos , Indóis/química , Masculino , Camundongos , Naftalenos/química , Receptor CB1 de Canabinoide
10.
Rapid Commun Mass Spectrom ; 35(12): e9080, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33713366

RESUMO

RATIONALE: The metabolism of arimistane (Arim) was first described in 2015, and androst-3,5-diene-7ß-ol-17-one was proposed as the main metabolite excreted in urine. Recently, a more detailed study describing the findings in urine after the administration of Arim has been published. This study corroborated the previously described metabolite but also described several phase I and II metabolites, analyzing trimethylsilylated urinary extracts using accurate mass spectrometry coupled to gas chromatography (GC/qTOF). The present communication is an extension of this late investigation aiming to implement the results of Arim metabolism using either accurate mass spectrometry and/or triple quadrupole tandem mass spectrometry, both coupled to liquid chromatography (LC/qTOF and LC/QqQ). METHODS: The samples used in this study were the same as previously studied using GC/qTOF. One single oral dose of Arim was administered to three volunteers, and samples collected before and up to 10 h after the Arim administration were analyzed. The unconjugated fraction of urine was removed, and the hydrolysis was performed with ß-glucuronidase from Escherichia coli. The extracts were reconstituted in water:acetonitrile before the LC/qTOF and LC/QqQ analysis. RESULTS: The presence of the proposed metabolites studied using GC was verified by accurate mass measurements. Twelve metabolites not found in the blank urine samples were identified by the accurate mass spectra with acceptable errors between -7.5 and 8.1 ppm: 4 reduced metabolites, 4 monohydroxylated metabolites, and 4 with an additional hydroxylation (bis-hydroxylated metabolites). Unlike in the study carried out using GC/qTOF, Arim itself was found in the samples of the three volunteers. CONCLUSIONS: Twelve metabolites were identified, and specific transitions were proposed. Despite the good results, some limitations remain. As for GC/qTOF, the α- or ß configuration of hydroxy groups, as well as the exact position for some unsaturation, cannot be assigned with certainty. Because certified reference materials of these metabolites are not yet available, the molecular structures were hypothesized considering the previous study using GC.


Assuntos
Substâncias para Melhoria do Desempenho/urina , Preparações Farmacêuticas/urina , Cromatografia Líquida de Alta Pressão/métodos , Dopagem Esportivo/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Estrutura Molecular , Substâncias para Melhoria do Desempenho/química , Urina/química
11.
Rapid Commun Mass Spectrom ; 35(23): e9196, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34498779

RESUMO

RATIONALE: Systematic electron ionization fragmentation studies of steroids have been performed to elucidate and trace their characteristic fragmentation patterns. However, the electron ionization source setting at 70 eV electron energy is much higher than the ionization potential (7-15 eV) of most organic compounds, leading to extensive fragmentation. We present a multifactorial study on optimizing a low-energy electron ionization source to maximize molecular ion formation while minimizing the extent of fragmentation to improve the analytical sensitivity of steroids, especially the more thermolabile ones, while preserving the information that can be extracted from the data. METHODS: Twenty-seven steroid reference materials, chosen to cover four main classes of urinary steroids, were considered; gas chromatography/quadrupole time-of-flight (GC/qTOF) analyses were carried out using an Agilent Technologies model 8890 gas chromatograph coupled to an Agilent Technologies model 7250 accurate-mass quadrupole time-of-flight (GC/qTOF) instrument. The effects of electron energy, emission current, and source temperature, as well as their potential interactions on steroid fragmentation pathways, have been assessed in full factorial experimental designs. RESULTS: Three parameters were specifically evaluated to improve the chromatographic/spectrometric response of the selected steroids: (i) degree of fragmentation; (ii) relative abundance of the molecular ion; and (iii) peak width. The first two were evaluated by screening designs that highlighted collision energy and source temperature as the most influential factors on the analytical responses of the considered steroids, while emission current always showed a non-significant influence. Then, an optimization design was performed to select the final source setting by searching for the combination of factors that minimize peak tailing. CONCLUSIONS: The proposed analytical approach permits a faster selection of optimal experimental conditions for steroidomics analysis using low-energy electron ionization and high-resolution mass spectrometry. The development of these designs of experiments (DoE) in full factorial design (FFD) allowed multiple inputs to be monitored at the same time, highlighting the possible interactions and estimating the effects of a factor in the different levels of the other factors considered.

12.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445476

RESUMO

4,4'-Dimethylaminorex (4,4'-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1-60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4'-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers' co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.


Assuntos
Comportamento Animal/efeitos dos fármacos , Oxazóis/toxicidade , Transtornos Psicofisiológicos/metabolismo , Transtornos Psicofisiológicos/patologia , Psicotrópicos/toxicidade , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxazóis/classificação , Oxazóis/urina , Transtornos Psicofisiológicos/induzido quimicamente , Psicotrópicos/classificação , Psicotrópicos/urina , Estereoisomerismo
13.
Molecules ; 26(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802606

RESUMO

Metandienone and methyltestosterone are orally active anabolic-androgenic steroids with a 17α-methyl structure that are prohibited in sports but are frequently detected in anti-doping analysis. Following the previously reported detection of long-term metabolites with a 17ξ-hydroxymethyl-17ξ-methyl-18-nor-5ξ-androst-13-en-3ξ-ol structure in the chlorinated metandienone analog dehydrochloromethyltestosterone ("oral turinabol"), in this study we investigated the formation of similar metabolites of metandienone and 17α-methyltestosterone with a rearranged D-ring and a fully reduced A-ring. Using a semi-targeted approach including the synthesis of reference compounds, two diastereomeric substances, viz. 17α-hydroxymethyl-17ß-methyl-18-nor-5ß-androst-13-en-3α-ol and its 5α-analog, were identified following an administration of methyltestosterone. In post-administration urines of metandienone, only the 5ß-metabolite was detected. Additionally, 3α,5ß-tetrahydro-epi-methyltestosterone was identified in the urines of both administrations besides the classical metabolites included in the screening procedures. Besides their applicability for anti-doping analysis, the results provide new insights into the metabolism of 17α-methyl steroids with respect to the order of reductions in the A-ring, the participation of different enzymes, and alterations to the D-ring.


Assuntos
Anabolizantes/metabolismo , Anabolizantes/urina , Metandrostenolona/metabolismo , Metandrostenolona/urina , Metiltestosterona/metabolismo , Metiltestosterona/urina , Anabolizantes/química , Cromatografia Gasosa-Espectrometria de Massas , Voluntários Saudáveis , Humanos , Metandrostenolona/química , Metiltestosterona/química , Pessoa de Meia-Idade , Padrões de Referência , Espectrometria de Massas em Tandem
14.
Rapid Commun Mass Spectrom ; 34(17): e8834, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32424893

RESUMO

Several authors have described the generation of androsta-3,5-diene-7-one structures from androst-5-ene-3,7-dione or androst-5-ene-3ß-ol-7-one under acidic conditions and/or at high temperatures. The goal of this study was to observe and to describe the results obtained after the chromatographic analysis of the trimethylsilyl derivatives of reference materials of 7-oxo-DHEA, 7α-hydroxy-DHEA, 7ß-hydroxy-DHEA, and androsta-3,5-diene-7,17-dione known as arimistane. METHODS: The purity of the analyte reference materials was verified by liquid chromatography/quadrupole mass spectrometry. The trimethylsilyl derivatives obtained using several mixtures with MSTFA (N-methyl-N-trimethylsilyl trifluoroacetamide) in comparison with solely MSTFA were analyzed by gas chromatography coupled to a time-of-flight detector equipped with a multimode inlet or to a simple quadrupole detector with a split/splitless inlet. RESULTS: The study showed that the formation of arimistane from 7-oxo-DHEA occurs using common derivatization reagents used for the analyses by gas chromatography (GC). In addition, the formation of the enolized TMS derivative of 7-oxo-DHEA was observed in considerable amount when it was reacted with MSTFA. The analysis of 7α-hydroxy-DHEA resulted in the detection of ~1% of arimistane. The formation of unexpected artifacts from derivatization is influenced by the reagent itself, the reaction temperature, the inlet used and its configuration. CONCLUSIONS: The derivatization reagent, instrumental conditions (inlet), as well as the chemical structures of the analytes present in the matrix, can influence the results. So, before describing a new feature as a potential "new" metabolite, special caution must be taken since we could actually be dealing with an artifact.

15.
Rapid Commun Mass Spectrom ; 34(24): e8937, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32876355

RESUMO

RATIONALE: The aromatase inhibitor formestane (4-hydroxyandrost-4-ene-3,17-dione) is included in the World Anti-Doping Agency's List of Prohibited Substances in Sport. However, it also occurs endogenously as do its 2-, 6- and 11-hydroxy isomers. The aim of this study is to distinguish the different isomers using gas chromatography/electron ionization mass spectrometry (GC/EI-MS) for enhanced confidence in detection and selectivity for determination. METHODS: Established derivatization protocols to introduce [2 H9 ]TMS were followed to generate perdeuterotrimethylsilylated and mixed deuterated derivatives for nine different hydroxy steroids, all with 3-keto-4-ene structure. Formestane was additionally labelled with H2 18 O to obtain derivatives doubly labelled with [2 H9 ]TMS and 18 O. GC/EI-MS spectra of labelled and unlabelled TMS derivatives were compared. Proposals for the generation of fragment ions were substantiated by high-resolution MS (GC/QTOFMS) and tandem mass spectrometry (MS/MS) experiments. RESULTS: Subclass-specific fragment ions include m/z 319 for the 6-hydroxy and m/z 219 for the 11-hydroxy compounds. Ions at m/z 415, 356, 341, 313, 269 and 267 were indicative for the 2- and 4-hydroxy compounds. For their discrimination the transition m/z 503 → 269 was selective for formestane. In 2-, 4- and 6-hydroxy steroids loss of a TMSO radical takes place as cleavage of a TMS-derived methyl radical and a neutral loss of (CH3 )2 SiO. Further common fragments were also elucidated. CONCLUSIONS: With the help of stable isotope labelling, the structures of postulated diagnostic fragment ions for the different steroidal subclasses were elucidated. 18 O-labelling of the other compounds will be addressed in future studies to substantiate the obtained findings. To increase method sensitivity MS3 may be suitable in future bioanalytical applications requiring discrimination of the 2- and 4-hydroxy compounds.


Assuntos
Androstenodiona/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Esteroides/análise , Espectrometria de Massas em Tandem/métodos , Androstenodiona/análise , Androstenodiona/química , Dopagem Esportivo , Esteroides/química
16.
Rapid Commun Mass Spectrom ; 34(19): e8870, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32570291

RESUMO

RATIONALE: Although the metabolism of methyltestosterone (MT) has been extensively studied since the 1950s using different techniques, the aim of this study was to investigate the hydroxylation in positions C2, C4 and C6 after in vitro experiments and in vivo excretion studies using gas chromatography time-of-flight (GC/TOF) and gas chromatography/tandem mass spectrometry (GC/MS/MS). The results could be influenced by the mass spectrometric analyser used. METHODS: Incubations were carried out with human liver microsomes and six enzymes belonging to the cytochrome P450 family using MT as a substrate. The trimethylsilyl derivatives of the samples were analysed using GC/TOF and GC/MS/MS once the correct MS/MS transitions had been selected, mainly for 6-hydroxymethyltestosterone (6-OH-MT) to avoid artefact interferences. A urinary excretion study was then performed after the administration of a 10 mg single oral dose of MT to a volunteer. RESULTS: The formation of hydroxylated metabolites of MT in the C6, C4 and C2 positions after both in vitro and in vivo experiments was observed. Sample evaluation using GC/TOF showed an interference for 6-OH-MT that could only be resolved in GC/MS/MS by monitoring specific transitions. The transitory detection of these hydroxylated metabolites in urine agrees with previous investigations that had described this metabolic route as being of little significance. CONCLUSIONS: In doping analysis, the formation of 4-hydroxymethyltestosterone (oxymesterone) from MT cannot be underestimated. Although it is only detected as a minor and short-term excretion metabolite, it cannot be overlooked as it was found in both in vitro and in vivo experiments. The use of a combination of different mass spectrometric instruments allowed reliable conclusions to be reached, and it was shown that special attention must be given to artefact formation.


Assuntos
Metiltestosterona , Sistema Enzimático do Citocromo P-450/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Hidroxilação , Masculino , Metiltestosterona/análogos & derivados , Metiltestosterona/análise , Metiltestosterona/metabolismo , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade
17.
Int J Legal Med ; 134(5): 1695-1711, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32356113

RESUMO

Methiopropamine is a structural analog of methamphetamine that is categorized as a novel psychoactive substance. It primarily acts as a norepinephrine-dopamine reuptake inhibitor and, secondarily, as a serotonin reuptake inhibitor. In humans, methiopropamine induces stimulation and alertness and increases focus and energy. However, significant side effects are reported, such as tachycardia, anxiety, panic attacks, perspiration, headache, and difficulty in breathing. To date, little data is available regarding its pharmacodynamic effects, thereby we aimed to investigate the acute in vivo effects induced by this drug on sensorimotor responses, body temperature, pain thresholds, motor activity, and cardiovascular and respiratory systems in CD-1 male mice. We selected a range of doses that correspond to the whole range of human reported use, in order to evaluate the threshold of adverse effects presentation. This study demonstrates that methiopropamine acts as a dopaminergic and noradrenergic stimulating drug and that the highest doses (10-30 mg/kg) impair the visual placing response, facilitate the acoustic and tactile response, induce hypothermia, increase mechanical and thermal analgesia, stimulate locomotor activity, induce motor stereotypies, and strongly affected cardiovascular and respiratory parameters, increasing heart rate, breath rate, and blood pressure but reducing oxygen saturation. On the contrary, lower doses do not show any of those effects. We hypothesize that there is a range of doses that do enhance performance but do not seem hazardous to users: this gap could induce the perception of safety and increase the abuser population.


Assuntos
Metanfetamina/análogos & derivados , Tiofenos/farmacologia , Animais , Relação Dose-Resposta a Droga , Masculino , Metanfetamina/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Psicotrópicos/farmacologia
18.
Rapid Commun Mass Spectrom ; 33(24): 1894-1905, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31295379

RESUMO

RATIONALE: The selection of the most appropriate metabolites of the substances included in the Prohibited List of the World Anti-Doping Agency (WADA) is fundamental for setting up methods allowing the detection of their intake by mass spectrometric methods. The aim of this work is to investigate the metabolism of arimistane (an aromatase inhibitor included in the WADA list) in order to improve its detection capacity among the antidoping community. METHODS: Urinary samples collected after controlled single administration of arimistane in three healthy volunteers were analysed using the common routine sample preparation in antidoping laboratories to determine the steroid profile parameters considered in the steroid module of the Athlete Biological Passport by gas chromatography coupled to tandem mass spectrometry (GC/MS/MS). For the elucidation of the proposed metabolites, GC coupled to high-accuracy MS (GC/qTOFMS) was used. Both mass spectrometers were operated in electron ionization mode. Non-conjugated (free), glucuronated and sulfated fractions were analysed separately. RESULTS: No relevant effects on the steroid profile could be detected after a single oral dose (25 mg). Up to 15 metabolites, present only in the post-administration samples, were detected and some structures were postulated. These metabolites are mainly excreted as glucuro-conjugated into urine and only minor amounts of two metabolites are also excreted unconjugated or as sulfates. CONCLUSIONS: Arimistane itself was not observed in the free or glucuronated fractions, but only in the sulfate fraction. The peaks showing mass spectra in agreement with hydroxylated metabolites did not match with those for 7-keto-DHEA, 7α- or 7ß-hydroxy-DHEA. This suggests that the first hydroxylation did not occur on C3, but on C2. These newly described metabolites allow the specific detection of arimistane misuse in sports.


Assuntos
Inibidores da Aromatase/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Adulto , Inibidores da Aromatase/metabolismo , Dopagem Esportivo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esteroides/metabolismo , Esteroides/urina , Espectrometria de Massas em Tandem/métodos , Urina/química
19.
Rapid Commun Mass Spectrom ; 33(6): 579-586, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30589473

RESUMO

RATIONALE: Isotope ratio mass spectrometry (IRMS) is an analytical technique required by the World Antidoping Agency (WADA) before releasing of an adverse finding for the abuse of pseudoendogenous steroids (i.e. testosterone). For every single individual, the delta 13 C values (‰) of the selected target compounds (TCs, i.e. testosterone and/or its precursors/metabolites) are compared with those of endogenous reference compounds (ERCs). The aim of this work is to investigate the individual variation in the delta values of four different commonly used ERCs to establish the maximum acceptable variation, in order to detect potential outliers. METHODS: Routine urine samples collected for antidoping purposes were submitted to IRMS confirmation. After a specific liquid chromatographic purification of the analytes of interest, the final extracts were analyzed by gas chromatography/combustion (GC/C)-IRMS. The selected ERCs monitored were pregnanediol, pregnanetriol, 11-keto-etiocholanolone and 11ß-hydroxyandrosterone. The obtained 13 C delta values were statistically analyzed to evaluate their inter- and intra-individual distribution. RESULTS: The delta values of the ERCs studied showed a normal distribution and no major differences among genders were observed. As expected, there are differences depending on the geographical origin of the samples, reflecting different dietary habits and food sources. The intra-individual dispersion, expressed as the standard deviation (SD) of the values of the studied ERCs, did not greatly exceed the instrumental error (0.5‰), demonstrating the good preservation of the delta values along the metabolic pathway. CONCLUSIONS: For the selected ERCs of non-sporting volunteers and the urinary specimens from more than 1000 sportsmen, we can propose a maximum SD of 0.54‰ and range of 1.2‰ for delta 13 C values as acceptance criteria to detect potential outliers. These cases can be caused by the external masking effect of the administration of a substance modifying the delta values or outliers due to unforeseen procedural artifacts.


Assuntos
Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Adulto , Anabolizantes/urina , Androsterona/análogos & derivados , Androsterona/urina , Isótopos de Carbono , Dopagem Esportivo , Etiocolanolona/análogos & derivados , Etiocolanolona/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/normas , Humanos , Masculino , Espectrometria de Massas/normas , Pregnanotriol/urina , Controle de Qualidade , Padrões de Referência , Detecção do Abuso de Substâncias/normas
20.
Rapid Commun Mass Spectrom ; 33(19): 1485-1493, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132805

RESUMO

RATIONALE: Isoflavones are a group of flavonoids that may be of interest in sport doping because they can be used by athletes in the recovery periods after the administration of anabolic steroids, with the aim of increasing the natural production of luteinizing hormone (LH) and, consequently, the biosynthesis of endogenous androgens. METHODS: The in vivo metabolism of methoxyisoflavone (5-methyl-7-methoxyisoflavone) and ipriflavone (7-isopropoxyisoflavone), respectively present in a dietary supplement and in a pharmaceutical preparation, was investigated. The study was carried out by the analysis of urinary samples collected from male Caucasian subjects before, during and after the oral administration of methoxyisoflavone or ipriflavone. After enzymatic hydrolysis and liquid-liquid extraction, all urinary samples were analyzed by gas chromatography/quadrupole time-of-flight (qTOF MS system/qTOF) electron ionization mass spectrometry (EI-MS). RESULTS: Eight metabolites of methoxyisoflavone and six metabolites of ipriflavone were isolated. The corresponding accurate mass spectra are specific for isoflavone structures and revealed also a retro-Diels-Alder fragmentation. CONCLUSIONS: When excreted in large amounts, the urinary metabolites of methoxyisoflavone and ipriflavone can be traced to potential confounding factors in doping analysis. As methoxyisoflavone and ipriflavone have been shown to inhibit the enzyme aromatase, thus interfering with the normal metabolic pathways of testosterone, the detection of their intake, by screening for the presence of their main metabolites in urine, might be helpful in routine doping control analysis.


Assuntos
Anabolizantes/urina , Dopagem Esportivo/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Isoflavonas/urina , Espectrometria de Massas/métodos , Adulto , Anabolizantes/síntese química , Anabolizantes/metabolismo , Humanos , Isoflavonas/síntese química , Isoflavonas/metabolismo , Masculino , Redes e Vias Metabólicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA