Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 181(4): 800-817.e22, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32302590

RESUMO

Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.


Assuntos
Núcleo Celular/fisiologia , Heterocromatina/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/fisiologia , Heterocromatina/metabolismo , Humanos , Masculino , Mecanorreceptores/fisiologia , Células-Tronco Mesenquimais , Camundongos , Estresse Mecânico
2.
Blood ; 121(5): 812-21, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23118218

RESUMO

UNLABELLED: Survival of chronic lymphocytic leukemia (CLL) cells depends on stimuli provided by a suitable microenvironment. The factors and mechanisms providing this growth support for CLL cells are not fully understood. We found that plasma levels of macrophage migration inhibitory factor (MIF), a proinflammatory and immunoregulatory chemokine, were elevated in CLL patients. Therefore, we characterized the functional role of MIF in a CLL mouse model. For this purpose, we crossed Eµ-TCL1 mice with MIF knockout (MIF-/-) mice. The resulting TCL1+/wtMIF/ mice showed a delayed onset of leukemia, reduced splenomegaly and hepatomegaly, and a longer survival than TCL1+/wtMIFwt/wt controls. Immunohistochemical examination of the lymphoid organs showed that the numbers of macrophages were significantly reduced in the spleen and bone marrow of TCL1+/wtMIF/ mice compared with TCL1+/wtMIFwt/wt controls. Mechanistic studies in vitro revealed that the absence of MIF rendered CLL cells more susceptible to apoptosis. Accordingly, incubation with an anti-MIF antibody reduced the survival of CLL cells on a macrophage feeder layer. In addition, the migratory activity of TCL1+/wtMIF/ macrophages was decreased compared with TCL1+/wtMIFwt/wt macrophages. Taken together, our results provide evidence that MIF supports the development of CLL by enhancing the interaction of CLL cells with macrophages. KEY POINTS: Targeted deletion of the gene for macrophage migration inhibitory factor (MIF) delays development of chronic lymphocytic leukemia and prolongs survival in mice. MIF recruits leukemia-associated macrophages to spleen or liver.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Oxirredutases Intramoleculares/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Macrófagos/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Sobrevivência Celular , Células Alimentadoras , Humanos , Oxirredutases Intramoleculares/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Células Tumorais Cultivadas
3.
Nat Cell Biol ; 24(12): 1714-1725, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471127

RESUMO

The endoplasmic reticulum (ER) coordinates mRNA translation and processing of secreted and endomembrane proteins. ER-associated degradation (ERAD) prevents the accumulation of misfolded proteins in the ER, but the physiological regulation of this process remains poorly characterized. Here, in a genetic screen using an ERAD model substrate in Caenorhabditis elegans, we identified an anti-viral RNA interference pathway, referred to as ER-associated RNA silencing (ERAS), which acts together with ERAD to preserve ER homeostasis and function. Induced by ER stress, ERAS is mediated by the Argonaute protein RDE-1/AGO2, is conserved in mammals and promotes ER-associated RNA turnover. ERAS and ERAD are complementary, as simultaneous inactivation of both quality-control pathways leads to increased ER stress, reduced protein quality control and impaired intestinal integrity. Collectively, our findings indicate that ER homeostasis and organismal health are protected by synergistic functions of ERAS and ERAD.


Assuntos
Retículo Endoplasmático , Interferência de RNA , Retículo Endoplasmático/genética
4.
J Gene Med ; 11(12): 1103-13, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19777441

RESUMO

BACKGROUND: Genetic modification of capsid proteins by peptide insertion has created the possibility of using adeno-associated viral (AAV) vectors for receptor specific gene transfer (AAV targeting). The most common site used for insertion in AAV serotype 2 capsids are amino acid positions 587 and 588 located at the second highest capsid protrusion. Reasoning that peptide insertions at the most exposed position augments target receptor interaction, we explored position 453 as a new insertion site. METHODS: Position 453 was identified in silico. Capsid mutants carrying the model ligand RGD-4C in position 453 with and without R585A/R588A substitutions were compared with respective mutants carrying the ligand in position 587. The accessibility of the inserted ligand was determined by an enzyme-linked immunosorbent assay, whereas the transduction efficiency and specificity of receptor binding were assayed by gene transfer and competition experiments, respectively. Vector biodistribution was determined in mice by quantitative polymerase chain reaction analysis. RESULTS: Initially, RGD-4C, inserted at position 453, failed to efficiently bind its target receptor. R585 and R588, located at the neighboring peak and known to mediate primary receptor binding, were identified as interfering residues. R585A and R588A substitutions rendered position 453 mutants superior to those with the ligand in position 587 in target receptor binding and cell transduction efficiency. The in vivo biodistribution was independent of the insertion site, but directed by the inserted ligand when primary receptor binding was avoided. CONCLUSIONS: Position 453 emerged as a prominent site for the development of targeting mutants. Furthermore, we show for the first time that linearly distant residues can be critical for the efficiency of inserted peptide ligands.


Assuntos
Proteínas do Capsídeo/genética , Dependovirus/genética , Engenharia Genética , Vetores Genéticos/genética , Mutagênese Insercional , Mutação Puntual/genética , Animais , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Dependovirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos/imunologia , Células HeLa , Humanos , Rim/citologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Transdução Genética
5.
Genome Biol ; 20(1): 185, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477170

RESUMO

Cytoscape is one of the most successful network biology analysis and visualization tools, but because of its interactive nature, its role in creating reproducible, scalable, and novel workflows has been limited. We describe Cytoscape Automation (CA), which marries Cytoscape to highly productive workflow systems, for example, Python/R in Jupyter/RStudio. We expose over 270 Cytoscape core functions and 34 Cytoscape apps as REST-callable functions with standardized JSON interfaces backed by Swagger documentation. Independent projects to create and publish Python/R native CA interface libraries have reached an advanced stage, and a number of automation workflows are already published.


Assuntos
Redes Reguladoras de Genes , Software , Fluxo de Trabalho , Automação , Anotação de Sequência Molecular
6.
Methods Mol Biol ; 1720: 111-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29236254

RESUMO

During the last decade, the study of mRNA decay has largely benefited from an increasing number of high-throughput assays that emerged from developments in next generation sequencing (NGS) technologies as well as mass spectrometry. While assay-specific data analysis is often reported and software made available many researchers struggle with the overwhelming challenge of integrating data from diverse assays, different sources, and of different formats.We here use Python, R, and bash to analyze and integrate RNAseq and eCLIP data publicly available from ENCODE. Annotation is performed with biomart, motif analysis with MEME and finally a functional enrichment analysis using DAVID. This analysis is centered on KHSRP eCLIP data from K562 cell as well as RNAseq data from KHSRP knockdown and respective mock controls.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Estabilidade de RNA , RNA Mensageiro/genética , Software , Biologia Computacional/instrumentação , Conjuntos de Dados como Assunto , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Análise de Sequência de RNA , Transativadores/genética
7.
PLoS One ; 10(5): e0125745, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993413

RESUMO

Growing evidence suggests a key role for RNA binding proteins (RBPs) in genome stability programs. Additionally, recent developments in RNA sequencing technologies, as well as mass-spectrometry techniques, have greatly expanded our knowledge on protein-RNA interactions. We here use full transcriptome sequencing and label-free LC/MS/MS to identify global changes in protein-RNA interactions in response to etoposide-induced genotoxic stress. We show that RBPs have distinct binding patterns in response to genotoxic stress and that inactivation of the RBP regulator module, p38/MK2, can affect the entire spectrum of protein-RNA interactions that take place in response to stress. In addition to validating the role of known RBPs like Srsf1, Srsf2, Elavl1 in the genotoxic stress response, we add a new collection of RBPs to the DNA damage response. We identify Khsrp as a highly regulated RBP in response to genotoxic stress and further validate its role as a driver of the G(1/)S transition through the suppression of Cdkn1a(P21) transcripts. Finally, we identify KHSRP as an indicator of overall survival, as well as disease free survival in glioblastoma multiforme.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Perfilação da Expressão Gênica/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Transativadores/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/genética , Intervalo Livre de Doença , Proteína Semelhante a ELAV 1/genética , Glioblastoma/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Fatores de Processamento de Serina-Arginina , Transdução de Sinais/genética
8.
Sci Transl Med ; 5(189): 189ra78, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23761041

RESUMO

When the integrity of the genome is threatened, cells activate a complex, kinase-based signaling network to arrest the cell cycle, initiate DNA repair, or, if the extent of damage is beyond repair capacity, induce apoptotic cell death. The ATM protein lies at the heart of this signaling network, which is collectively referred to as the DNA damage response (DDR). ATM is involved in numerous DDR-regulated cellular responses-cell cycle arrest, DNA repair, and apoptosis. Disabling mutations in the gene encoding ATM occur frequently in various human tumors, including lung cancer and hematological malignancies. We report that ATM deficiency prevents apoptosis in human and murine cancer cells exposed to genotoxic chemotherapy. Using genetic and pharmacological approaches, we demonstrate in vitro and in vivo that ATM-defective cells display strong non-oncogene addiction to DNA-PKcs (DNA-dependent protein kinase catalytic subunit). Further, this dependence of ATM-defective cells on DNA-PKcs offers a window of opportunity for therapeutic intervention: We show that pharmacological or genetic abrogation of DNA-PKcs in ATM-defective cells leads to the accumulation of DNA double-strand breaks and the subsequent CtBP-interacting protein (CtIP)-dependent generation of large single-stranded DNA (ssDNA) repair intermediates. These ssDNA structures trigger proapoptotic signaling through the RPA/ATRIP/ATR/Chk1/p53/Puma axis, ultimately leading to the apoptotic demise of ATM-defective cells exposed to DNA-PKcs inhibitors. Finally, we demonstrate that DNA-PKcs inhibitors are effective as single agents against ATM-defective lymphomas in vivo. Together, our data implicate DNA-PKcs as a drug target for the treatment of ATM-defective malignancies.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Linfoma/genética , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
9.
Front Genet ; 3: 159, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22936947

RESUMO

In response to DNA damage, cells activate a complex, kinase-based signaling network to arrest the cell cycle and allow time for DNA repair, or, if the extend of damage is beyond repair capacity, induce apoptosis. This signaling network, which is collectively referred to as the DNA damage response (DDR), is primarily thought to consist of two components-a rapid phosphorylation-driven signaling cascade that results in immediate inhibition of Cdk/cyclin complexes and a delayed transcriptional response that promotes a prolonged cell cycle arrest through the induction of Cdk inhibitors, such as p21. In recent years a third layer of complexity has emerged that involves potent posttranscriptional regulatory mechanisms that control the cellular response to DNA damage. Although much has been written on the relevance of the DDR in cancer and on the post-transcriptional role of microRNAs (miRs) in cancer, the post-transcriptional regulation of the DDR by non-coding RNAs and RNA-binding proteins (RBPs) still remains elusive in large parts. Here, we review the recent developments in this exciting new area of research in the cellular response to genotoxic stress. We put specific emphasis on the role of RBPs and the control of their function through DNA damage-activated protein kinases.

10.
Leuk Lymphoma ; 51(8): 1375-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20687795

RESUMO

Recent therapeutic advances in chronic lymphocytic leukemia (CLL) are reflected by high response rates in most subsets of patients. However, refractory disease remains a problem, and virtually all of even the most sensitive tumors eventually recur. Therefore, ongoing efforts aim at the development of optimized interventional designs that more specifically target the strong pro-survival signature of the transformed B cell. Stimuli from the CLL microenvironment are considered the predominant force that sets this high anti-apoptotic threshold. We introduce here our concept that the oncogene T-cell leukemia 1A (TCL1A), which induces CLL-like disease in transgenic mice, significantly enhances such milieu-derived signaling, propagates associated resistance, and therefore represents a targetable pathway in CLL. We discuss inhibitory strategies that are based on TCL1A's activation of the growth modulating kinase AKT and on influences that regulate TCL1A expression. Respective preliminary data indicate that differential response categories of CLL exist. Future studies will test TCL1A's inherent predictive information.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia de Células T/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Camundongos , Prognóstico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
J Virol ; 80(14): 7265-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16809332

RESUMO

Adeno-associated virus type 2 (AAV-2) targeting vectors have been generated by insertion of ligand peptides into the viral capsid at amino acid position 587. This procedure ablates binding of heparan sulfate proteoglycan (HSPG), AAV-2's primary receptor, in some but not all mutants. Using an AAV-2 display library, we investigated molecular mechanisms responsible for this phenotype, demonstrating that peptides containing a net negative charge are prone to confer an HSPG nonbinding phenotype. Interestingly, in vivo studies correlated the inability to bind to HSPG with liver and spleen detargeting in mice after systemic application, suggesting several strategies to improve efficiency of AAV-2 retargeting to alternative tissues.


Assuntos
Dependovirus/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Modelos Moleculares , Mutação , Receptores Virais/metabolismo , Substituição de Aminoácidos , Animais , Dependovirus/genética , Marcação de Genes , Vetores Genéticos/genética , Fígado/metabolismo , Fígado/virologia , Camundongos , Especificidade de Órgãos/genética , Biblioteca de Peptídeos , Ligação Proteica/genética , Estrutura Terciária de Proteína , Receptores Virais/genética , Baço/metabolismo , Baço/virologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA