Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 22(2): 971-1005, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546415

RESUMO

New types of protein sources will enter our diet in a near future, reinforcing the need for a straightforward in vitro (cell-based) screening model to test and predict the safety of these novel proteins, in particular their potential risk for de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for allergen sensitization describes the current knowledge of key events underlying the complex cellular interactions that proceed allergic food sensitization. Currently, there is no consensus on the in vitro model to study the intestinal translocation of proteins as well as the epithelial activation, which comprise the first molecular initiation events (ME1-3) and the first key event of the AOP, respectively. As members of INFOGEST, we have highlighted several critical features that should be considered for any proposed in vitro model to study epithelial protein transport in the context of allergic sensitization. In addition, we defined which intestinal cell types are indispensable in a consensus model of the first steps of the AOP, and which cell types are optional or desired when there is the possibility to create a more complex cell model. A model of these first key aspects of the AOP can be used to study the gut epithelial translocation behavior of known hypo- and hyperallergens, juxtaposed to the transport behavior of novel proteins as a first screen for risk management of dietary proteins. Indeed, this disquisition forms a basis for the development of a future consensus model of the allergic sensitization cascade, comprising also the other key events (KE2-5).


Assuntos
Hipersensibilidade Alimentar , Humanos , Hipersensibilidade Alimentar/prevenção & controle , Alérgenos , Dieta , Alimentos , Absorção Intestinal
2.
Allergy ; 77(3): 933-945, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34324715

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are known to protect against allergies. Moreover, the decrease in the frequency and efficiency of Tregs amplifies allergic symptoms. AIM: This study investigated whether expanding Tregs in vivo with an IL-2/IL-2 antibody complex could be safe, well tolerated and efficient in a therapeutic setting in allergies. METHODS: We produced an anti-IL-2 antibody (1C6) and demonstrated that when it is complexed to human IL-2, it increases IL-2 efficiency to induce Tregs in vivo without any detectable side effects. Furthermore, the IL-2/1C6 complex induces an increase in Helios expression by Tregs, suggesting that it not only elevated Treg numbers but also boosted their functions. Using mouse models of house-dust-mite-induced airway inflammation and wheat-gliadin-induced food allergies, we investigated the therapeutic potential of the IL-2/1C6 complex in allergies. RESULTS: IL-2/1C6 treatment significantly reduced allergic symptoms, specific IgE production, the adaptive immune response and tissue damage. Interestingly, IL-2/1C6 treatment modulated innate lymphoid cells by increasing ILC2s in asthma and decreasing ILC3s in food allergies. CONCLUSION: In conclusion,complexed IL-2/anti-IL-2 may restore Treg numbers and function in respiratory and food allergies, thereby improving allergic markers and symptoms. Our IL-2/anti-IL-2 complex offers new hope for reestablishing immune tolerance in patients with allergies.


Assuntos
Asma , Hipersensibilidade Alimentar , Animais , Modelos Animais de Doenças , Humanos , Imunidade Inata , Interleucina-2 , Linfócitos , Camundongos , Linfócitos T Reguladores
3.
Allergy ; 77(2): 525-539, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34181765

RESUMO

BACKGROUND: Voltage-gated calcium (Cav 1) channels contribute to T-lymphocyte activation. Cav 1.2 and Cav 1.3 channels are expressed in Th2 cells but their respective roles are unknown, which is investigated herein. METHODS: We generated mice deleted for Cav 1.2 in T cells or Cav 1.3 and analyzed TCR-driven signaling. In this line, we developed original fast calcium imaging to measure early elementary calcium events (ECE). We also tested the impact of Cav 1.2 or Cav 1.3 deletion in models of type 2 airway inflammation. Finally, we checked whether the expression of both Cav 1.2 and Cav 1.3 in T cells from asthmatic children correlates with Th2-cytokine expression. RESULTS: We demonstrated non-redundant and synergistic functions of Cav 1.2 and Cav 1.3 in Th2 cells. Indeed, the deficiency of only one channel in Th2 cells triggers TCR-driven hyporesponsiveness with weakened tyrosine phosphorylation profile, a strong decrease in initial ECE and subsequent reduction in the global calcium response. Moreover, Cav 1.3 has a particular role in calcium homeostasis. In accordance with the singular roles of Cav 1.2 and Cav 1.3 in Th2 cells, deficiency in either one of these channels was sufficient to inhibit cardinal features of type 2 airway inflammation. Furthermore, Cav 1.2 and Cav 1.3 must be co-expressed within the same CD4+ T cell to trigger allergic airway inflammation. Accordingly with the concerted roles of Cav 1.2 and Cav 1.3, the expression of both channels by activated CD4+ T cells from asthmatic children was associated with increased Th2-cytokine transcription. CONCLUSIONS: Thus, Cav 1.2 and Cav 1.3 act as a duo, and targeting only one of these channels would be efficient in allergy treatment.


Assuntos
Asma , Canais de Cálcio , Animais , Asma/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Células Th2/metabolismo
4.
Thorax ; 76(4): 326-334, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542087

RESUMO

BACKGROUND: Severe asthma is a chronic lung disease characterised by inflammation, airway hyperresponsiveness (AHR) and airway remodelling. The molecular mechanisms underlying uncontrolled airway smooth muscle cell (aSMC) proliferation involved in pulmonary remodelling are still largely unknown. Small G proteins of the Rho family (RhoA, Rac1 and Cdc42) are key regulators of smooth muscle functions and we recently demonstrated that Rac1 is activated in aSMC from allergic mice. The objective of this study was to assess the role of Rac1 in severe asthma-associated airway remodelling. METHODS AND RESULTS: Immunofluorescence analysis in human bronchial biopsies revealed an increased Rac1 activity in aSMC from patients with severe asthma compared with control subjects. Inhibition of Rac1 by EHT1864 showed that Rac1 signalling controlled human aSMC proliferation induced by mitogenic stimuli through the signal transducer and activator of transcription 3 (STAT3) signalling pathway. In vivo, specific deletion of Rac1 in SMC or pharmacological inhibition of Rac1 by nebulisation of NSC23766 prevented AHR and aSMC hyperplasia in a mouse model of severe asthma. Moreover, the Rac1 inhibitor prevented goblet cell hyperplasia and epithelial cell hypertrophy whereas treatment with corticosteroids had less effect. Nebulisation of NSC23766 also decreased eosinophil accumulation in the bronchoalveolar lavage of asthmatic mice. CONCLUSION: This study demonstrates that Rac1 is overactive in the airways of patients with severe asthma and is essential for aSMC proliferation. It also provides evidence that Rac1 is causally involved in AHR and airway remodelling. Rac1 may represent as an interesting target for treating both AHR and airway remodelling of patients with severe asthma.


Assuntos
Remodelação das Vias Aéreas , Asma/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipersensibilidade Respiratória , Proteínas rac1 de Ligação ao GTP/metabolismo , Corticosteroides/farmacologia , Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacologia , Animais , Biópsia , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Proliferação de Células , Modelos Animais de Doenças , Eosinófilos/metabolismo , Células Caliciformes/metabolismo , Humanos , Camundongos , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
5.
Clin Exp Allergy ; 50(7): 824-834, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32418317

RESUMO

BACKGROUND: Interleukin-7 (IL-7) is the most important cytokine for T-cell homeostasis. IL-7 signals through the IL-7 receptor (IL-7R) which is composed of an alpha chain (IL-7Rα), also called CD127 and a common gamma chain. T lymphocytes, especially T helper type 2, play a crucial role in the pathobiology of allergic asthma. OBJECTIVE: To study the effects of an anti-CD127 monoclonal antibody (mAb) in a murine model of allergic airway inflammation induced by house dust mite (HDM). METHODS: Allergic airway inflammation was induced in mice using a protocol comprising 4 weekly percutaneous sensitizations followed by 2 weekly intranasal challenges with total HDM extracts and treated by intraperitoneal injections of an anti-CD127 mAb. Because CD127 is shared by both IL-7R and the receptor for thymic stromal lymphopoietin (TSLP), a group of mice was also treated with an anti-IL-7 mAb to block only the IL-7 signalling pathway. RESULTS: Anti-CD127 mAb-treated mice showed significantly lower airway resistance in response to methacholine and improvement in lung histology compared with isotype mAb-treated animals. Anti-CD127 mAb treatment significantly decreased the mRNA expression of Th2 cytokines (IL-4, IL-5, and IL-13) and chemokines (CCL5/RANTES) in lung tissue, decreased the secretion of Th2 cytokines (IL-4, IL-5, and IL-13) and chemokines (CXCL1 and CCL11/eotaxin) in bronchoalveolar lavage fluid (BALF), decreased serum HDM-specific IgE, and reduced the number of total leucocytes and leucocyte subpopulations such as eosinophils, macrophages, lymphocytes, T lymphocytes, and ILC2 in BALF and lung tissue. Mice treated with anti-IL-7 mAb also showed less allergic airway inflammation as evidenced by significantly lower airway resistance and fewer leucocytes in BALF and lung tissue compared to mice treated with the corresponding isotype control mAb. CONCLUSION AND CLINICAL RELEVANCE: Targeting the IL-7Rα by an anti-CD127 mAb improves allergic airway inflammation in mice and presents as a potential therapeutic approach for allergic asthma.


Assuntos
Anticorpos Monoclonais/farmacologia , Asma , Subunidade alfa de Receptor de Interleucina-7 , Transdução de Sinais/efeitos dos fármacos , Células Th2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Asma/tratamento farmacológico , Asma/imunologia , Feminino , Inflamação/tratamento farmacológico , Inflamação/imunologia , Subunidade alfa de Receptor de Interleucina-7/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-7/imunologia , Camundongos Endogâmicos BALB C , Pyroglyphidae/imunologia , Transdução de Sinais/imunologia
6.
Respir Res ; 21(1): 33, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996218

RESUMO

BACKGROUND: Interleukin 15 (IL-15) is a growth and modulating factor for B, T lymphocytes and natural killer cells (NK). Its action on innate and adaptive immunity is modulated by its alpha chain receptor (IL-15Rα). The IL-15/sIL-15Rα complex (IL-15Cx) increases the bioavailability and activity of the cytokine in vivo. IL-15Cx has been used in diseases to dampen IL-15 inflammation by the use of soluble IL-15Ralpha specificity. Here, we aim to evaluate the interest of IL-15Cx in a mouse model of asthma. METHODS: Using a mouse model of asthma consisting in percutaneous sensitization and intranasal challenge with total house dust mite extract, we evaluated the effect of IL-15Cx injected intraperitoneally four times after a first nasal challenge. Respiratory function was assessed by the technique of forced oscillations (Flexivent®). The effect on bronchial remodeling was evaluated by lung histology. The inflammatory status was analyzed by flow cytometry. RESULTS: We observed that the IL-15Cx modulates lung and systemic inflammation by increasing NK cells, CD8+ memory T cells and regulatory cells. However, IL-15Cx displays no effect on bronchial hyperreactivity, bronchial remodeling nor cellular bronchial infiltrate, but limits the secretion of bronchial mucus and modulates only inflammatory response in a HDM-allergic asthma murine model. CONCLUSIONS: IL-15Cx has a limited effect on immune response in asthma and has no effect on lung function in mice. Thus, it limits its therapeutic potential but might suggest a combinatory potential with other therapeutics.


Assuntos
Imunidade Adaptativa/imunologia , Asma/imunologia , Imunidade Celular/imunologia , Interleucina-15/imunologia , Receptores de Interleucina-15/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Alérgenos/imunologia , Alérgenos/toxicidade , Animais , Asma/induzido quimicamente , Asma/metabolismo , Feminino , Humanos , Imunidade Celular/efeitos dos fármacos , Interleucina-15/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Interleucina-15/metabolismo
7.
Allergy ; 75(2): 289-301, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31187876

RESUMO

Significant efforts are necessary to introduce new dietary protein sources to feed a growing world population while maintaining food supply chain sustainability. Such a sustainable protein transition includes the use of highly modified proteins from side streams or the introduction of new protein sources that may lead to increased clinically relevant allergic sensitization. With food allergy being a major health problem of increasing concern, understanding the potential allergenicity of new or modified proteins is crucial to ensure public health protection. The best predictive risk assessment methods currently relied on are in vivo models, making the choice of endpoint parameters a key element in evaluating the sensitizing capacity of novel proteins. Here, we provide a comprehensive overview of the most frequently used in vivo and ex vivo endpoints in murine food allergy models, addressing their strengths and limitations for assessing sensitization risks. For optimal laboratory-to-laboratory reproducibility and reliable use of predictive tests for protein risk assessment, it is important that researchers maintain and apply the same relevant parameters and procedures. Thus, there is an urgent need for a consensus on key food allergy parameters to be applied in future food allergy research in synergy between both knowledge institutes and clinicians.


Assuntos
Modelos Animais de Doenças , Hipersensibilidade Alimentar/imunologia , Animais , Temperatura Corporal , Citocinas/biossíntese , Hipersensibilidade Alimentar/sangue , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos , Fenótipo , Linfócitos T/imunologia
8.
J Allergy Clin Immunol ; 142(3): 892-903.e8, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29129580

RESUMO

BACKGROUND: T lymphocytes express not only cell membrane ORAI calcium release-activated calcium modulator 1 but also voltage-gated calcium channel (Cav) 1 channels. In excitable cells these channels are composed of the ion-forming pore α1 and auxiliary subunits (ß and α2δ) needed for proper trafficking and activation of the channel. Previously, we disclosed the role of Cav1.2 α1 in mouse and human TH2 but not TH1 cell functions and showed that knocking down Cav1 α1 prevents experimental asthma. OBJECTIVE: We investigated the role of ß and α2δ auxiliary subunits on Cav1 α1 function in TH2 lymphocytes and on the development of acute allergic airway inflammation. METHODS: We used Cavß antisense oligonucleotides to knock down Cavß and gabapentin, a drug that binds to and inhibits α2δ1 and α2δ2, to test their effects on TH2 functions and their capacity to reduce allergic airway inflammation. RESULTS: Mouse and human TH2 cells express mainly Cavß1, ß3, and α2δ2 subunits. Cavß antisense reduces T-cell receptor-driven calcium responses and cytokine production by mouse and human TH2 cells with no effect on TH1 cells. Cavß is mainly involved in restraining Cav1.2 α1 degradation through the proteasome because a proteasome inhibitor partially restores the α1 protein level. Gabapentin impairs the T-cell receptor-driven calcium response and cytokine production associated with the loss of α2δ2 protein in TH2 cells. CONCLUSIONS: These results stress the role of Cavß and α2δ2 auxiliary subunits in the stability and activation of Cav1.2 channels in TH2 lymphocytes both in vitro and in vivo, as demonstrated by the beneficial effect of Cavß antisense and gabapentin in allergic airway inflammation.


Assuntos
Canais de Cálcio Tipo L/imunologia , Hipersensibilidade/imunologia , Subunidades Proteicas/imunologia , Linfócitos T/imunologia , Doença Aguda , Alérgenos , Animais , Feminino , Inflamação/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ovalbumina
9.
J Allergy Clin Immunol ; 139(6): 1957-1965.e3, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27833025

RESUMO

BACKGROUND: Particular neutralizing mAbs to certain cytokines act as agonists in vivo through protection of the cytokine's active site and prolongation of its half-life. Although this principle might be useful for targeted immunotherapy, its role in the pathogenesis of inflammation and autoimmunity is unclear. OBJECTIVE: We sought to determine whether slight, structurally nonrelevant modifications of the prototypic proinflammatory cytokine IL-1ß during an immune response could elicit polyclonal anti-IL-1ß antibody responses that modulated IL-1ß's in vivo activity. METHODS: We engineered 2 different IL-1ß variants, thereby mimicking the process of cytokine modification occurring during inflammation, and conjugated them to virus-like particles, followed by immunization of mice. The resulting polyclonal anti-IL-1ß antibody responses were assessed by using in vitro and in vivo assays, as well as 2 relevant (auto-) inflammatory murine models. RESULTS: Although antibody responses generated to one variant were potently inhibiting IL-1ß, antibody responses induced by the other variant even potentiated the in vivo effects of IL-1ß; the latter led to enhanced morbidity in 2 different IL-1ß-mediated mouse models, including a model of inflammatory bowel disease and an inflammatory arthritis model. CONCLUSION: These data demonstrate that endogenous polyclonal anti-cytokine antibody responses can enhance the cytokine's activity in inflammatory and autoimmune diseases.


Assuntos
Anticorpos/imunologia , Interleucina-1beta/imunologia , Animais , Células HEK293 , Células HeLa , Humanos , Inflamação/sangue , Inflamação/imunologia , Interleucina-1beta/sangue , Interleucina-1beta/genética , Interleucina-6/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
10.
Blood ; 122(13): 2271-81, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23963040

RESUMO

The cytokine interleukin (IL)-7 exerts essential roles in lymph node (LN) organogenesis and lymphocyte development and homeostasis. Recent studies have identified lymphatic endothelial cells (LECs) as a major source of IL-7 in LNs. Here, we report that LECs not only produce IL-7, but also express the IL-7 receptor chains IL-7Rα and CD132. Stimulation with recombinant IL-7 enhanced LEC in vitro activity and induced lymphangiogenesis in the cornea of wild-type (WT) mice. Whereas in IL-7Rα(-/-) mice, dermal lymphatic vessels (LVs) were abnormally organized and lymphatic drainage was compromised, transgenic overexpression of IL-7 in mice resulted in an expanded dermal LV network with increased drainage function. Moreover, systemic treatment with recombinant IL-7 enhanced lymphatic drainage in the skin of WT mice and of mice devoid of lymphocytes. Experiments in IL-7Rα(-/-) bone marrow chimeras demonstrated that the drainage-enhancing activity of IL-7 was exclusively dependent on IL-7Rα expression in stromal but not in hematopoietic cells. Finally, near-infrared in vivo imaging performed in IL-7Rα(-/-) mice revealed that the pumping activity of collecting vessels was normal but fluid uptake into lymphatic capillaries was defective. Overall, our data point toward an unexpected new role for IL-7 as a potential autocrine mediator of lymphatic drainage.


Assuntos
Células Endoteliais/metabolismo , Interleucina-7/metabolismo , Vasos Linfáticos/metabolismo , Animais , Citometria de Fluxo , Imunofluorescência , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Respir Res ; 15: 142, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25433406

RESUMO

BACKGROUND: Atopic march refers to the typical transition from a food allergy in early childhood to allergic asthma in older children and adults. However the precise interplay of events involving gut, skin and pulmonary inflammation in this process is not completely understood. OBJECTIVES: To develop a mouse model of mixed food and respiratory allergy mimicking the atopic march and better understand the impact of food allergies on asthma. METHODS: Food allergy to ovalbumin (OVA) was induced through intra-peritoneal sensitization and intra-gastric challenge, and/or a respiratory allergy to house dust mite (HDM) was obtained through percutaneous sensitization and intra-nasal challenges with dermatophagoides farinae (Der f) extract. Digestive, respiratory and systemic parameters were analyzed. RESULTS: OVA-mediated gut allergy was associated with an increase in jejunum permeability, and a worsening of Der f-induced asthma with stronger airway hyperresponsiveness and pulmonary cell infiltration, notably eosinophils. There was overproduction of the pro-eosinophil chemokine RANTES in broncho-alveolar lavages associated with an enhanced Th2 cytokine secretion and increased total and Der f-specific IgE when the two allergies were present. Both AHR and lung inflammation increased after a second pulmonary challenge. CONCLUSION: Gut sensitization to OVA amplifies Der f-induced asthma in mice.


Assuntos
Antígenos de Dermatophagoides , Proteínas de Artrópodes , Asma/imunologia , Hiper-Reatividade Brônquica/imunologia , Hipersensibilidade Alimentar/imunologia , Intestinos/imunologia , Pulmão/imunologia , Ovalbumina , Animais , Asma/metabolismo , Asma/fisiopatologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Broncoconstrição , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Feminino , Hipersensibilidade Alimentar/metabolismo , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Mucosa Intestinal/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos Endogâmicos BALB C , Permeabilidade , Pneumonia/imunologia , Pneumonia/metabolismo , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fatores de Tempo
12.
Am J Respir Crit Care Med ; 187(12): 1349-59, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23590269

RESUMO

RATIONALE: Natural killer (NK) cells are innate lymphocytes that target virus-infected and tumor cells. Much less is known about their ability to limit adaptive immune responses. OBJECTIVES: Thus, we investigated to what extent NK cells can influence mouse lung allograft rejection. METHODS: For this purpose, we employed an orthotopic lung transplantation model in mice. MEASUREMENTS AND MAIN RESULTS: We demonstrate here that NK cells infiltrate mouse lung allografts before T cells and thereby diminished allograft inflammation, and that NK-cell deficiency enhanced allograft rejection. In contrast, expansion of recipient NK cells through IL-15/IL-15Rα complex treatment resulted in decreased T-cell infiltration and alloreactive T-cell priming as well as improved function of the allogeneic lung transplant. Only perforin-competent, but not perforin-deficient, NK cells were able to transfer these beneficial effects into transplanted NK cell-deficient IL-15Rα(-/-) mice. These NK cells killed allogeneic dendritic cells (DCs) in vitro and significantly decreased the number of allogeneic DCs in transplanted lungs in vivo. Furthermore, DC-depleted lung allografts presented decreased signs of rejection. CONCLUSIONS: These results suggest that NK cells favor allograft acceptance by depleting donor-derived DCs, which otherwise would prime alloreactive T-cell responses. Thus, conditioning regimens that augment NK-cell reactivity should be clinically explored to prepare lung allograft recipients.


Assuntos
Células Dendríticas , Rejeição de Enxerto/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Transplante de Pulmão/imunologia , Animais , Camundongos , Receptores de Interleucina-15/imunologia
13.
Transl Res ; 272: 151-161, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471633

RESUMO

The Proprotein Convertase Subtilisin Kexin of type 9 (PCSK9) has been identified in 2003 as the third gene involved in familial hypercholesterolemia. PCSK9 binds to the membrane low-density lipoprotein receptor (LDLR) and promotes its cellular internalization and lysosomal degradation. Beyond this canonical role, PCSK9 was recently described to be involved in several immune responses. However, to date, the contribution of PCSK9 in food allergy remains unknown. Here, we showed that Pcsk9 deficiency or pharmacological inhibition of circulating PCSK9 with a specific monoclonal antibody (m-Ab) protected mice against symptoms of gliadin-induced-food allergy, such as increased intestinal transit time and ear oedema. Furthermore, specific PCSK9 inhibition during the elicitation steps of allergic process was sufficient to ensure anti-allergic effects in mice. Interestingly, the protective effect of PCSK9 inhibition against food allergy symptoms was independent of the LDLR as PCSK9 inhibitors remained effective in Ldlr deficient mice. In vitro, we showed that recombinant gain of function PCSK9 (PCSK9 D374Y) increased the percentage of mature bone marrow derived dendritic cells (BMDCs), promoted naïve T cell proliferation and potentiated the gliadin induced basophils degranulation. Altogether, our data demonstrate that PCSK9 inhibition is protective against gliadin induced food allergy in a LDLR-independent manner.

14.
Front Allergy ; 4: 1199355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346413

RESUMO

Background: Asthma is a chronic inflammatory airway disease characterized by a prevailing type 2 inflammation, airway hyperresponsiveness, and mucus hypersecretion and is driven by various factors among which oxidative molecules, called reactive oxygen species (ROS), play a major role. Superoxide dismutases (SODs) are enzymes that constitute the first line of defense against ROS. Melon SOD-gliadin, which is known as GliSODin®, is commonly used as a nutritional supplement that has proven antioxidant properties. Objectives: In this study, we evaluated the efficacy and mechanism of action GliSODin® in the treatment of allergic asthma. Methods: House dust mite (HDM)-induced asthmatic mice were orally exposed to GliSODin®, and airway hyperresponsiveness, lung inflammation, in vitro T-cell polarization, in vivo T-cell reactivation, and blood immunoglobulin were investigated. Results: GliSODin® reduced airway hyperresponsiveness, lung innate and adaptive immune response, and HDM-specific IgE production. Coculturing CD4+ T-cell with HDM-sensitized dendritic cells and GliSODin® reduced T-cell polarization into Th2 and Th17 cells. Moreover, adoptively transferred CD4+ T cells from asthmatic mice exhibited a reduced reactivation of Th2 and Th17 cells following stimulation with HDM plus GliSODin®. Conclusion: GliSODin® abrogates asthma features and reduces CD4+ T-cell polarization and reactivation. Taken together, these data suggest that GliSODin® could be used for the management of asthma symptoms.

15.
Allergy Asthma Immunol Res ; 15(2): 246-261, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37021509

RESUMO

PURPOSE: Asthma is a frequent chronic inflammatory bronchial disease affecting more than 300 million patients worldwide, 70% of whom are secondary to allergy. The diversity of asthmatic endotypes contributes to their complexity. The inter-relationship between allergen and other exposure and the airway microbiome adds to the phenotypic diversity and defines the natural course of asthma. Here, we compared the mouse models of house dust mite (HDM)-induced allergic asthma. Allergic sensitization was performed via various routes and associated with outcomes. METHODS: Mice were sensitized with HDM via the oral, nasal or percutaneous routes. Lung function, barrier integrity, immune response and microbiota composition were analyzed. RESULTS: Severe impairment of respiratory function was observed in the mice sensitized by the nasal and cutaneous paths. It was associated with epithelial dysfunction characterized by an increased permeability secondary to junction protein disruption. Such sensitization paths induced a mixed eosinophilic and neutrophilic inflammatory response with high interleukin (IL)-17 airway secretion. In contrast, orally sensitized mice showed a mild impairment of respiratory function. Epithelial dysfunction was mild with increased mucus production, but preserved epithelial junctions. Regarding lung microbiota, sensitization provoked a significant loss of diversity. At the genus level, Cutibacterium, Acinetobacter, Streptococcus and Lactobacillus were found to be modulated according to the sensitization pathway. An increase in theanti-inflammatory microbiota metabolites was observed in the oral-sensitization group. CONCLUSIONS: Our study highlights the strong impact of the sensitization route on the pathophysiology and the critical phenotypic diversity of allergic asthma in a mouse model.

16.
Int J Pharm ; 629: 122349, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36328197

RESUMO

An in vitro approach is proposed to study the release of an Active Pharmaceutical Ingredient-Ionic Liquid (API-IL) from a natural biopolymer matrix based on zein, a maize storage protein. Zein can be processed in the molten state with 20 w% [Lidocainium][Ibuprofenate] added as API-IL also acting as plasticizer and potentially co-plasticized by glycerol. The thermal stability of the matrix is checked, as well as the in vivo biological activity of the API-IL confirming anesthetic and anti-inflammatory activities. Model tablets are thermomolded at 130 °C (∅20 mm, 0.2 mm thick) and submitted to simulated digestion based on the INFOGEST static protocol of gastrointestinal food digestion at 37 °C (2 h under gastric conditions followed by 2 h under intestinal ones). The release of the API-IL is evaluated by HPLC-UV to dissociate lidocainium, that shows a progressive release (35 % after 2 h and 60 % after 4 h digestion), from ibuprofenate, that is mainly released under intestinal conditions due to low solubility in acidic conditions. The monitoring of the tablets reveals release mechanisms based on diffusion without noticeable erosion of the matrix. These results demonstrate the interest of this thermoplastic material to provide a relevant drug delivery system.


Assuntos
Líquidos Iônicos , Zeína , Solubilidade , Comprimidos , Digestão
17.
Nutrients ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215440

RESUMO

Symptom occurrence at the first ingestion suggests that food allergy may result from earlier sensitization via non-oral routes. We aimed to characterize the cellular populations recruited at various mucosal and immune sites after experimental sensitization though different routes. BALB/cJ mice were exposed to a major allergenic food (peanut) mixed with cholera toxin via the intra-gastric (i.g.), respiratory, cutaneous, or intra-peritoneal (i.p.) route. We assessed sensitization and elicitation of the allergic reaction and frequencies of T cells, innate lymphoid cells (ILC), and inflammatory and dendritic cells (DC) in broncho-alveolar lavages (BAL), lungs, skin, intestine, and various lymph nodes. All cellular data were analyzed through non-supervised and supervised uni/multivariate analysis. All exposure routes, except cutaneous, induced sensitization, but intestinal allergy was induced only in i.g.- and i.p.-exposed mice. Multivariate analysis of all cellular constituents did not discriminate i.g. from control mice. Conversely, respiratory-sensitized mice constituted a distinct cluster, characterized by high local inflammation and immune cells recruitment. Those mice also evidenced changes in ILC frequencies at distant site (intestine). Despite absence of sensitization, cutaneous-exposed mice evidenced comparable changes, albeit less intense. Our study highlights that the initial route of sensitization to a food allergen influences the nature of the immune responses at various mucosal sites. Interconnections of mucosal immune systems may participate in the complexity of clinical manifestations as well as in the atopic march.


Assuntos
Arachis , Hipersensibilidade Alimentar , Alérgenos , Animais , Modelos Animais de Doenças , Imunidade Inata , Linfócitos , Camundongos , Camundongos Endogâmicos BALB C
18.
Toxicology ; 472: 153188, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35430321

RESUMO

Allergic diseases are increasing worldwide, and their precise causes are not fully understood. However, this observation can be correlated with growing chemical pollution of the environment. Bisphenol A (BPA) alters the immune system, microbiota and barrier functions. Here, we studied the effect of oral BPA at levels equivalent to human exposure to understand the mechanisms of immunological, physiological and microbial action on food allergies. In a murine model of allergy, we evaluated the effect of direct oral exposure to BPA at 4 µg/kg bw/d corresponding to tolerable daily intake (TDI). We studied symptoms, intestinal physiology and humorall and cellular immune responses during food allergy. We explored the relationship between oral exposure to BPA and changes in the gut microenvironment. Markers of food allergy and intestinal permeability were increased following exposure to BPA. We also observed a modulated humorall and T-cell response with aggravation of food allergy inflammation. Moreover, BPA exposure induced gut dysbiosis and decreased microbial diversity induced by food allergy. Altogether, these results suggest that the 2015 European Food Safety Authority (EFSA) TDI should be reviewed to consider the immunotoxicity of BPA.


Assuntos
Compostos Benzidrílicos , Hipersensibilidade Alimentar , Animais , Compostos Benzidrílicos/toxicidade , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Camundongos , Fenóis
19.
Gastroenterology ; 138(7): 2378-87, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20188102

RESUMO

BACKGROUND & AIMS: Infliximab is a monoclonal antibody against tumor necrosis factor that is used to treat patients with inflammatory bowel disease. We investigated serum levels and cellular expression of interleukin (IL)-15 and its receptor (sIL-15Ralpha) in patients with Crohn's disease (CD) treated with infliximab; and the effect on sIL-15Ralpha secretion by epithelial cells. METHODS: CD patients were given infliximab (n = 40; 3 infusions); 37 healthy controls were studied. Serum levels of IL-15, sIL-15Ralpha, and complex were determined by radioimmunoassay and cytokine levels by enzyme-linked immunosorbent assay. IL-15Ralpha and A Desintegrin and Metalloproteinase 17 levels were assessed by immunohistochemistry. Epithelial cell lines (HT-29 and Caco-2) were cultured with infliximab, adalimumab, or etanercept. Patients were classified as responders and nonresponders according to their Crohn's Disease Activity Index and clinical observations. RESULTS: Before infliximab, IL-15 was higher in responders than in controls and nonresponders. After infliximab, IL-15 decreased in responders while remaining stable in nonresponders. sIL-15Ralpha and IL-15/sIL-15Ralpha complex levels were higher in CD than in controls and increased only in responders after infliximab. IL-15Ralpha and A Desintegrin and Metalloproteinase 17 colocalized in epithelial cells and were higher in CD patients. In vitro, infliximab but not adalimumab and etanercept induced sIL-15Ralpha secretion by epithelial cells. CONCLUSIONS: Serum level of sIL-15Ralpha and the IL-15/sIL-15Ralpha complex increased in responder patients and the response was associated with a decrease of IL-15. Infliximab induced the release of the IL-15 receptor alpha, suggesting a specific modulation of IL-15 and its soluble receptor by reverse signaling through transmembrane tumor necrosis factor alpha.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doença de Crohn/tratamento farmacológico , Interleucina-15/fisiologia , Receptores de Interleucina-15/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteínas ADAM/análise , Proteína ADAM17 , Adulto , Proteína C-Reativa/análise , Colo/imunologia , Doença de Crohn/imunologia , Feminino , Humanos , Infliximab , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Receptores de Interleucina-15/análise , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA