Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Pathog ; 13(6): e1006455, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628648

RESUMO

The Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein-protein VII. Two other Ad core proteins, V and X/µ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection. It is not known if naked Ad DNA is packaged into the capsid, as with dsDNA bacteriophage and herpesviruses, followed by the encapsidation of viral core proteins, or if a unique packaging mechanism exists with Ad where a DNA-protein complex is simultaneously packaged into the virion. The latter model would require an entirely new molecular mechanism for packaging compared to known viral packaging motors. We characterized a virus with a conditional knockout of core protein VII. Remarkably, virus particles were assembled efficiently in the absence of protein VII. No changes in protein composition were evident with VII-virus particles, including the abundance of core protein V, but changes in the proteolytic processing of some capsid proteins were evident. Virus particles that lack protein VII enter the cell, but incoming virions did not escape efficiently from endosomes. This greatly diminished all subsequent aspects of the infectious cycle. These results reveal that the Ad major core protein VII is not required to condense viral DNA within the capsid, but rather plays an unexpected role during virus maturation and the early stages of infection. These results establish a new paradigm pertaining to the Ad assembly mechanism and reveal a new and important role of protein VII in early stages of infection.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/fisiologia , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Adenoviridae/genética , Capsídeo/metabolismo , Genoma Viral , Humanos , Proteínas do Core Viral/genética , Replicação Viral
2.
J Virol ; 87(22): 12367-79, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24027314

RESUMO

Endocytosis is the most prevalent entry port for viruses into cells, but viruses must escape from the lumen of endosomes to ensure that viral genomes reach a site for replication and progeny formation. Endosomal escape also helps viruses bypass endolysosomal degradation and presentation to certain Toll-like intrinsic immunity receptors. The mechanisms for cytosolic delivery of nonenveloped viruses or nucleocapsids from enveloped viruses are poorly understood, in part because no quantitative assays are readily available which directly measure the penetration of viruses into the cytosol. Following uptake by clathrin-mediated endocytosis or macropinocytosis, the nonenveloped adenoviruses penetrate from endosomes to the cytosol, and they traffic with cellular motors on microtubules to the nucleus for replication. In this report, we present a novel single-cell imaging assay which quantitatively measures individual cytosolic viruses and distinguishes them from endosomal viruses or viruses at the plasma membrane. Using this assay, we showed that the penetration of human adenoviruses of the species C and B occurs rapidly after virus uptake. Efficient penetration does not require acidic pH in endosomes. This assay is versatile and can be adapted to other adenoviruses and members of other nonenveloped and enveloped virus families.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/fisiologia , Bioensaio , Proteínas do Capsídeo/metabolismo , Membrana Celular/virologia , Endossomos/virologia , Internalização do Vírus , Infecções por Adenoviridae/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Citosol/metabolismo , Citosol/virologia , Endocitose , Endossomos/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Receptores Virais/metabolismo
3.
EMBO J ; 27(7): 956-69, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18323776

RESUMO

Endocytosis supports cell communication, growth, and pathogen infection. The species B human adenovirus serotype 3 (Ad3) is associated with epidemic conjunctivitis, and fatal respiratory and systemic disease. Here we show that Ad3 uses dynamin-independent endocytosis for rapid infectious entry into epithelial and haematopoietic cells. Unlike Ad5, which uses dynamin-dependent endocytosis, Ad3 endocytosis spatially and temporally coincided with enhanced fluid-phase uptake. It was sensitive to macropinocytosis inhibitors targeting F-actin, protein kinase C, the sodium-proton exchanger, and Rac1 but not Cdc42. Infectious Ad3 macropinocytosis required viral activation of p21-activated kinase 1 (PAK1) and the C-terminal binding protein 1 of E1A (CtBP1), recruited to macropinosomes. These macropinosomes also contained the Ad3 receptors CD46 and alpha v integrins. CtBP1 is a phosphorylation target of PAK1, and is bifunctionally involved in membrane traffic and transcriptional repression of cell cycle, cancer, and innate immunity pathways. Phosphorylation-defective S147A-CtBP1 blocked Ad3 but not Ad5 infection, providing a direct link between PAK1 and CtBP1. The data show that viruses induce macropinocytosis for infectious entry, a pathway used in antigen presentation and cell migration.


Assuntos
Adenovírus Humanos/classificação , Adenovírus Humanos/metabolismo , Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pinocitose , Actinas/metabolismo , Infecções por Adenoviridae/virologia , Adenovírus Humanos/ultraestrutura , Clatrina/metabolismo , Dinaminas/metabolismo , Endossomos/enzimologia , Endossomos/ultraestrutura , Endossomos/virologia , Ativação Enzimática , Células HeLa , Sistema Hematopoético/citologia , Sistema Hematopoético/virologia , Humanos , Integrinas/metabolismo , Células K562 , Modelos Biológicos , Proteína Quinase C/metabolismo , Sorotipagem , Internalização do Vírus , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
J Virol ; 84(10): 5336-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20237079

RESUMO

Human adenovirus serotype 35 (HAdV-35; here referred to as Ad35) causes kidney and urinary tract infections and infects respiratory organs of immunocompromised individuals. Unlike other adenoviruses, Ad35 has a low seroprevalence, which makes Ad35-based vectors promising candidates for gene therapy. Ad35 utilizes CD46 and integrins as receptors for infection of epithelial and hematopoietic cells. Here we show that infectious entry of Ad35 into HeLa cells, human kidney HK-2 cells, and normal human lung fibroblasts strongly depended on CD46 and integrins but not heparan sulfate and variably required the large GTPase dynamin. Ad35 infections were independent of expression of the carboxy-terminal domain of AP180, which effectively blocks clathrin-mediated uptake. Ad35 infections were inhibited by small chemicals against serine/threonine kinase Pak1 (p21-activated kinase), protein kinase C (PKC), sodium-proton exchangers, actin, and acidic organelles. Remarkably, the F-actin inhibitor jasplakinolide, the Pak1 inhibitor IPA-3, or the sodium-proton exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) blocked endocytic uptake of Ad35. Dominant-negative proteins or small interfering RNAs against factors driving macropinocytosis, including the small GTPase Rac1, Pak1, or the Pak1 effector C-terminal binding protein 1 (CtBP1), potently inhibited Ad35 infection. Confocal laser scanning microscopy, electron microscopy, and live cell imaging showed that Ad35 colocalized with fluid-phase markers in large endocytic structures that were positive for CD46, alphanu integrins, and also CtBP1. Our results extend earlier observations with HAdV-3 (Ad3) and establish macropinocytosis as an infectious pathway for species B human adenoviruses in epithelial and hematopoietic cells.


Assuntos
Adenovírus Humanos/fisiologia , Células Epiteliais/virologia , Pinocitose , Internalização do Vírus , Linhagem Celular , Fibroblastos/virologia , Humanos , Integrinas/fisiologia , Proteína Cofatora de Membrana/fisiologia , Receptores Virais/fisiologia
5.
Traffic ; 9(12): 2265-78, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18980614

RESUMO

Receptor-mediated endocytosis is a major gate for pathogens into cells. In this study, we analyzed the trafficking of human adenovirus type 2 and 5 (Ad2/5) and the escape-defective temperature-sensitive Ad2-ts1 mutant in epithelial cancer cells. Ad2/5 and Ad2-ts1 uptake into endosomes containing transferrin, major histocompatibility antigen 1 and the Rab5 effector early endosome antigen 1 (EEA1) involved dynamin, amphiphysin, clathrin and Eps15. Cointernalization experiments showed that most of the Ad2/5 and Ad2-ts1 visited the same EEA1-positive endosomes. In contrast to Ad2/5, Ad2-ts1 required functional Rab5 for endocytosis and lysosomal transport and was sensitive to the phosphatidyl-inositol-3 (PI3)-kinase inhibitor wortmannin or the ubiquitin-binding protein Hrs for sorting from early to late endosomes. Endosomal escape of Ad2 was not affected by incubation at 19 degrees C, which blocked membrane sorting in early endosomes and inhibited Ad2-ts1 transport to lysosomes. Unlike Semliki Forest Virus (SFV), sorting of Ad2-ts1 to late endosomes was independent of Rab7 and Ad2/5 infection independent of EEA1. The data indicate that Ad2/5 and Ad2-ts1 use an invariant machinery for clathrin-mediated uptake to early endosomes. We suggest that the infectious Ad2 particles are either directly released from early endosomes to the cytosol or sorted by a temperature-insensitive and PI3-kinase-independent mechanism to an escape compartment different from late endosomes or lysosomes.


Assuntos
Adenoviridae/fisiologia , Adenoviridae/ultraestrutura , Linhagem Celular Tumoral , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose , Endossomos/enzimologia , Endossomos/ultraestrutura , Humanos , Microscopia Imunoeletrônica , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Tempo , Internalização do Vírus , Proteínas rab5 de Ligação ao GTP/metabolismo
6.
Environ Microbiol ; 12(5): 1243-59, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20148929

RESUMO

The amoebae-resistant opportunistic pathogen Legionella pneumophila employs a biphasic life cycle to replicate in host cells and spread to new niches. Upon entering the stationary growth phase, the bacteria switch to a transmissive (virulent) state, which involves a complex regulatory network including the lqs gene cluster (lqsA-lqsR-hdeD-lqsS). LqsR is a putative response regulator that promotes host-pathogen interactions and represses replication. The autoinducer synthase LqsA catalyses the production of the diffusible signalling molecule 3-hydroxypentadecan-4-one (LAI-1) that is presumably recognized by the sensor kinase LqsS. Here, we analysed L. pneumophila strains lacking lqsA or lqsS. Compared with wild-type L. pneumophila, the DeltalqsS strain was more salt-resistant and impaired for the Icm/Dot type IV secretion system-dependent uptake by phagocytes. Legionella pneumophila strains lacking lqsS, lqsR or the alternative sigma factor rpoS sedimented more slowly and produced extracellular filaments. Deletion of lqsA moderately reduced the uptake of L. pneumophila by phagocytes, and the defect was complemented by expressing lqsA in trans. Unexpectedly, the overexpression of lqsA also restored the virulence defect and reduced filament production of L. pneumophila mutant strains lacking lqsS or lqsR, but not the phenotypes of strains lacking rpoS or icmT. These results suggest that LqsA products also signal through sensors not encoded by the lqs gene cluster. A transcriptome analysis of the DeltalqsA and DeltalqsS mutant strains revealed that under the conditions tested, lqsA regulated only few genes, whereas lqsS upregulated the expression of 93 genes at least twofold. These include 52 genes clustered in a 133 kb high plasticity genomic island, which is flanked by putative DNA-mobilizing genes and encodes multiple metal ion efflux pumps. Upon overexpression of lqsA, a cluster of 19 genes in the genomic island was also upregulated, suggesting that LqsA and LqsS participate in the same regulatory circuit.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas/fisiologia , Legionella pneumophila/fisiologia , Fagócitos/microbiologia , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/microbiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Perfilação da Expressão Gênica , Células HL-60 , Histidina Quinase , Interações Hospedeiro-Patógeno , Humanos , Filamentos Intermediários , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Camundongos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fagócitos/imunologia , Proteínas Quinases/genética , Fatores de Transcrição/genética , Virulência
7.
J Cell Biol ; 158(6): 1119-31, 2002 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12221069

RESUMO

Adenovirus type 2 (Ad2) binds the coxsackie B virus Ad receptor and is endocytosed upon activation of the alphav integrin coreceptors. Here, we demonstrate that expression of dominant negative clathrin hub, eps15, or K44A-dynamin (dyn) inhibited Ad2 uptake into epithelial cells, indicating clathrin-dependent viral endocytosis. Surprisingly, Ad strongly stimulated the endocytic uptake of fluid phase tracers, coincident with virus internalization but without affecting receptor-mediated transferrin uptake. A large amount of the stimulated endocytic activity was macropinocytosis. Macropinocytosis depended on alphav integrins, PKC, F-actin, and the amiloride-sensitive Na+/H+ exchanger, which are all required for Ad escape from endosomes and infection. Macropinocytosis stimulation was not a consequence of viral escape, since it occurred in K44A-dyn-expressing cells. Surprisingly, 30-50% of the endosomal contents were released into the cytosol of control and also K44A-dyn-expressing cells, and the number of fluid phase-positive endosomes dropped below the levels of noninfected cells, indicating macropinosomal lysis. The release of macropinosomal contents was Ad dose dependent, but the presence of Ad particles on macropinosomal membranes was not sufficient for contents release. We conclude that Ad signaling from the cell surface controls the induction of macropinosome formation and leakage, and this correlates with viral exit to the cytosol and infection.


Assuntos
Adenoviridae/metabolismo , Adenoviridae/patogenicidade , Clatrina/fisiologia , Endossomos/metabolismo , Pinocitose , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adenoviridae/ultraestrutura , Infecções por Adenovirus Humanos/virologia , Proteínas de Ligação ao Cálcio/metabolismo , Invaginações Revestidas da Membrana Celular/ultraestrutura , Vesículas Revestidas/ultraestrutura , Citosol/virologia , Dinaminas , Células Epiteliais/virologia , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Transferrina/metabolismo , Células Tumorais Cultivadas
8.
Cell Rep ; 29(12): 3785-3795.e8, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851912

RESUMO

Adenoviruses (AdVs) cause respiratory, ocular, and gastrointestinal tract infection and inflammation in immunocompetent people and life-threatening disease upon immunosuppression. AdV vectors are widely used in gene therapy and vaccination. Incoming particles attach to nuclear pore complexes (NPCs) of post-mitotic cells, then rupture and deliver viral DNA (vDNA) to the nucleus or misdeliver to the cytosol. Our genome-wide RNAi screen in AdV-infected cells identified the RING-type E3 ubiquitin ligase Mind bomb 1 (Mib1) as a proviral host factor for AdV infection. Mib1 is implicated in Notch-Delta signaling, ciliary biogenesis, and RNA innate immunity. Mib1 depletion arrested incoming AdVs at NPCs. Induced expression of full-length but not ligase-defective Mib1 in knockout cells triggered vDNA uncoating from NPC-tethered virions, nuclear import, misdelivery of vDNA, and vDNA expression. Mib1 is an essential host factor for AdV uncoating in human cells, and it provides a new concept for licensing virion DNA delivery through the NPC.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/genética , Genoma Viral , Poro Nuclear/virologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Adenoviridae/imunologia , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/imunologia , DNA Viral/genética , Células HEK293 , Células HeLa , Humanos , Poro Nuclear/genética , Ligação Proteica , Interferência de RNA , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Vírion
9.
Mol Biol Cell ; 16(6): 2999-3009, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15814838

RESUMO

Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.


Assuntos
Adenoviridae/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Adenoviridae/ultraestrutura , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Endotélio Vascular/citologia , Ácidos Graxos Insaturados/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Carioferinas/antagonistas & inibidores , Microscopia Confocal , Centro Organizador dos Microtúbulos/efeitos dos fármacos , Centro Organizador dos Microtúbulos/metabolismo , Mitose , Pironas/farmacologia , RNA Interferente Pequeno/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Fuso Acromático/virologia , Transferrina/farmacocinética , Veias Umbilicais/citologia , Proteína Exportina 1
10.
Cell Death Dis ; 9(3): 272, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449668

RESUMO

Apoptosis and programmed necrosis (necroptosis) determine cell fate, and antagonize infection. Execution of these complementary death pathways involves the formation of receptor-interacting protein kinase 1 (RIPK1) containing complexes. RIPK1 binds to adaptor proteins, such as TRIF (Toll-IL-1 receptor-domain-containing-adaptor-inducing interferon-beta factor), FADD (Fas-associated-protein with death domain), NEMO (NF-κB regulatory subunit IKKγ), SQSTM1 (sequestosome 1/p62), or RIPK3 (receptor-interacting protein kinase 3), which are involved in RNA sensing, NF-κB signaling, autophagosome formation, apoptosis, and necroptosis. We report that a range of rhinoviruses impair apoptosis and necroptosis in epithelial cells late in infection. Unlike the double-strand (ds) RNA mimetic poly I:C (polyinosinic:polycytidylic acid), the exposure of dsRNA to toll-like receptor 3 (TLR3) in rhinovirus-infected cells did not lead to apoptosis execution. Accordingly, necroptosis and the production of ROS (reactive oxygen species) were not observed late in infection, when RIPK3 was absent. Instead, a virus-induced alternative necrotic cell death pathway proceeded, which led to membrane rupture, indicated by propidium iodide staining. The impairment of dsRNA-induced apoptosis late in infection was controlled by the viral 3C-protease (3Cpro), which disrupted RIPK1-TRIF/FADD /SQSTM1 immune-complexes. 3Cpro and 3C precursors were found to coimmuno-precipitate with RIPK1, cleaving the RIPK1 death-domain, and generating N-terminal RIPK1 fragments. The depletion of RIPK1 or chemical inhibition of its kinase at the N-terminus did not interfere with virus progeny formation or cell fate. The data show that rhinoviruses suppress apoptosis and necroptosis, and release progeny by an alternative cell death pathway, which is controlled by viral proteases modifying innate immune complexes.


Assuntos
Apoptose , Cisteína Endopeptidases/metabolismo , Células Epiteliais/virologia , Mucosa Nasal/virologia , Necroptose , Rhinovirus/enzimologia , Neoplasias do Colo do Útero/virologia , Proteínas Virais/metabolismo , Proteases Virais 3C , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Células Epiteliais/ultraestrutura , Proteína de Domínio de Morte Associada a Fas/metabolismo , Feminino , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Mucosa Nasal/enzimologia , Mucosa Nasal/imunologia , Mucosa Nasal/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Rhinovirus/imunologia , Rhinovirus/patogenicidade , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/ultraestrutura
11.
Nat Commun ; 9(1): 1980, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773792

RESUMO

The type I interferon (IFN) system plays an important role in controlling herpesvirus infections, but it is unclear which IFN-mediated effectors interfere with herpesvirus replication. Here we report that human myxovirus resistance protein B (MxB, also designated Mx2) is a potent human herpesvirus restriction factor in the context of IFN. We demonstrate that ectopic MxB expression restricts a range of herpesviruses from the Alphaherpesvirinae and Gammaherpesvirinae, including herpes simplex virus 1 and 2 (HSV-1 and HSV-2), and Kaposi's sarcoma-associated herpesvirus (KSHV). MxB restriction of HSV-1 and HSV-2 requires GTPase function, in contrast to restriction of lentiviruses. MxB inhibits the delivery of incoming HSV-1 DNA to the nucleus and the appearance of empty capsids, but not the capsid delivery to the cytoplasm or tegument dissociation from the capsid. Our study identifies MxB as a potent pan-herpesvirus restriction factor which blocks the uncoating of viral DNA from the incoming viral capsid.


Assuntos
Infecções por Herpesviridae/imunologia , Herpesviridae/fisiologia , Interferon Tipo I/imunologia , Proteínas de Resistência a Myxovirus/imunologia , Replicação Viral/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Linhagem Celular Tumoral , Núcleo Celular/imunologia , Núcleo Celular/virologia , Citoplasma , DNA Viral/imunologia , Células HEK293 , Herpesviridae/patogenicidade , Infecções por Herpesviridae/virologia , Humanos , Proteínas de Resistência a Myxovirus/genética , RNA Interferente Pequeno/metabolismo , Desenvelopamento do Vírus/imunologia
12.
Curr Biol ; 13(10): 828-32, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12747830

RESUMO

Photoreceptors (R cells) in the Drosophila retina connect to targets in three distinct layers of the optic lobe of the brain: R1-R6 connect to the lamina, and R7 and R8 connect to distinct layers in the medulla. In each of these layers, R axon termini are arranged in evenly spaced topographic arrays. In a genetic screen for mutants with abnormal R cell connectivity, we recovered mutations in flamingo (fmi). fmi encodes a seven-transmembrane cadherin, previously shown to function in planar cell polarity and in dendritic patterning. Here, we show that fmi has two specific functions in R8 axon targeting: it facilitates competitive interactions between adjacent R8 axons to ensure their correct spacing, and it promotes the formation of stable connections between R8 axons and their target cells in the medulla. The former suggests a general role for Fmi in establishing nonoverlapping dendritic and axonal target fields. The latter, together with the finding that N-Cadherin has an analogous role in R7 axon-target interactions, points to a cadherin-based system for target layer specificity in the Drosophila visual system.


Assuntos
Axônios/fisiologia , Caderinas/metabolismo , Drosophila/fisiologia , Células Fotorreceptoras de Invertebrados/metabolismo , Vias Visuais/metabolismo , Alelos , Animais , Axônios/ultraestrutura , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Caderinas/genética , Drosophila/metabolismo , Drosophila/ultraestrutura , Proteínas de Drosophila , Regulação da Expressão Gênica/fisiologia , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Heterozigoto , Larva/crescimento & desenvolvimento , Mosaicismo , Mutação , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/ultraestrutura , Pupa/crescimento & desenvolvimento , Retina/fisiologia , Retina/ultraestrutura , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/ultraestrutura
13.
Cell Host Microbe ; 18(1): 75-85, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26159720

RESUMO

During cell entry, non-enveloped viruses undergo partial uncoating to expose membrane lytic proteins for gaining access to the cytoplasm. We report that adenovirus uses membrane piercing to induce and hijack cellular wound removal processes that facilitate further membrane disruption and infection. Incoming adenovirus stimulates calcium influx and lysosomal exocytosis, a membrane repair mechanism resulting in release of acid sphingomyelinase (ASMase) and degradation of sphingomyelin to ceramide lipids in the plasma membrane. Lysosomal exocytosis is triggered by small plasma membrane lesions induced by the viral membrane lytic protein-VI, which is exposed upon mechanical cues from virus receptors, followed by virus endocytosis into leaky endosomes. Chemical inhibition or RNA interference of ASMase slows virus endocytosis, inhibits virus escape to the cytosol, and reduces infection. Ceramide enhances binding of protein-VI to lipid membranes and protein-VI-induced membrane rupture. Thus, adenovirus uses a positive feedback loop between virus uncoating and lipid signaling for efficient membrane penetration.


Assuntos
Adenoviridae/fisiologia , Proteínas do Capsídeo/metabolismo , Membrana Celular/fisiologia , Interações Hospedeiro-Patógeno , Internalização do Vírus , Adenoviridae/enzimologia , Biotransformação , Membrana Celular/metabolismo , Ceramidas/metabolismo , Endocitose , Exocitose , Células HeLa , Humanos , Lisossomos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo
14.
Nat Commun ; 2: 391, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21750545

RESUMO

Mucosal epithelia provide strong barriers against pathogens. For instance, the outward facing apical membrane of polarized epithelial cells lacks receptors for agents, such as hepatitis C virus, herpesvirus, reovirus, poliovirus or adenovirus. In addition, macrophages eliminate pathogens from the luminal space. Here we show that human adenovirus type 5 engages an antiviral immune response to enter polarized epithelial cells. Blood-derived macrophages co-cultured apically on polarized epithelial cells facilitate epithelial infection. Infection also occurs in the absence of macrophages, if virus-conditioned macrophage-medium containing the chemotactic cytokine CXCL8 (interleukin-8), or recombinant CXCL8 are present. In polarized cells, CXCL8 activates a Src-family tyrosine kinase via the apical CXCR1 and CXCR2 receptors. This activation process relocates the viral co-receptor ανß3 integrin to the apical surface, and enables apical binding and infection with adenovirus depending on the primary adenovirus receptor CAR. This paradigm may explain how other mucosal pathogens enter epithelial cells.


Assuntos
Adenovírus Humanos/fisiologia , Células Epiteliais/virologia , Interleucina-8/imunologia , Internalização do Vírus , Adenovírus Humanos/imunologia , Western Blotting , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Imunofluorescência , Humanos , Integrina alfaVbeta3/metabolismo , Interleucina-8/metabolismo , Macrófagos/imunologia , Microscopia Confocal
15.
Cell Host Microbe ; 10(2): 105-17, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21843868

RESUMO

Viral particle binding to plasma membrane receptors elicits virus motions, recruits signaling proteins, and triggers membrane bending and fission, finally resulting in endocytic virus uptake. Here we analyze how human adenovirus engages its receptor coxsackievirus adenovirus receptor (CAR) and coreceptor αv integrin to move on the plasma membrane. Virus binding to CAR through fiber knobs gave rise to diffusive motions and actomyosin-2-dependent drifts, while integrin-targeted viruses were spatially more confined. Diffusions, drifts, and confined motions were specifically observed with viral particles that were subsequently internalized. CAR-mediated drifts together with integrin binding supported fiber shedding from adenovirus particles, leading to exposure of the membrane-lytic internal virion protein VI and enhanced viral escape from endosomes. Our results show that adenovirus uncoating is initiated at the plasma membrane by CAR drifting motion and binding to immobile integrins.


Assuntos
Adenovírus Humanos/patogenicidade , Integrina alfaV/metabolismo , Receptores Virais/metabolismo , Desenvelopamento do Vírus , Actinas/metabolismo , Actomiosina/antagonistas & inibidores , Actomiosina/metabolismo , Adenovírus Humanos/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Membrana Celular/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Microscopia Crioeletrônica , Endocitose , Imunofluorescência , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Camundongos , Microscopia Confocal , Pseudópodes/metabolismo , Ligação Viral , Internalização do Vírus , Liberação de Vírus
16.
Cell Host Microbe ; 10(3): 210-23, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21925109

RESUMO

Many viruses deliver their genomes into the host cell nucleus for replication. However, the size restrictions of the nuclear pore complex (NPC), which regulates the passage of proteins, nucleic acids, and solutes through the nuclear envelope, require virus capsid uncoating before viral DNA can access the nucleus. We report a microtubule motor kinesin-1-mediated and NPC-supported mechanism of adenovirus uncoating. The capsid binds to the NPC filament protein Nup214 and kinesin-1 light-chain Klc1/2. The nucleoporin Nup358, which is bound to Nup214/Nup88, interacts with the kinesin-1 heavy-chain Kif5c to indirectly link the capsid to the kinesin motor. Kinesin-1 disrupts capsids docked at Nup214, which compromises the NPC and dislocates nucleoporins and capsid fragments into the cytoplasm. NPC disruption increases nuclear envelope permeability as indicated by the nuclear influx of large cytoplasmic dextran polymers. Thus, kinesin-1 uncoats viral DNA and compromises NPC integrity, allowing viral genomes nuclear access to promote infection.


Assuntos
Infecções por Adenoviridae/metabolismo , Adenoviridae/fisiologia , Capsídeo/metabolismo , Cinesinas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Montagem de Vírus , Adenoviridae/genética , Infecções por Adenoviridae/virologia , Linhagem Celular , Células HeLa , Humanos , Cinesinas/genética , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica
17.
Autophagy ; 5(7): 980-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19587536

RESUMO

Autophagy is a lysosomal-mediated degradation process that promotes cell survival during nutrient-limiting conditions. However, excessive autophagy results in cell death. In Drosophila, autophagy is regulated nutritionally, hormonally and developmentally in several tissues, including the fat body, a nutrient-storage organ. Here we use a proteomics approach to identify components of starvation-induced autophagic responses in the Drosophila fat body. Using cICAT labeling and mass spectrometry, differences in protein expression levels of normal compared to starved fat bodies were determined. Candidates were analyzed genetically for their involvement in autophagy in fat bodies deficient for the respective genes. One of these genes, Desat1, encodes a lipid desaturase. Desat1 mutant cells fail to induce autophagy upon starvation. The desat1 protein localizes to autophagic structures after nutrient depletion and is required for fly development. Lipid analyses revealed that Desat1 regulates the composition of lipids in Drosophila. We propose that Desat1 exerts its role in autophagy by controlling lipid biosynthesis and/or signaling necessary for autophagic responses.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Ácidos Graxos Dessaturases/metabolismo , Proteômica/métodos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Corpo Adiposo/citologia , Corpo Adiposo/metabolismo , Ácidos Graxos Dessaturases/genética , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
J Virol ; 79(4): 2604-13, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15681460

RESUMO

Adenovirus type 2 (Ad2) and Ad5 enter epithelial cells via the coxsackievirus B Ad receptor (CAR) and alpha(v) integrin coreceptors. In the absence of CAR, they can be directed to the Fcgamma receptor 1 of hematopoietic cells by an adaptor comprising the extracellular CAR domain and the Fc portion of a human immunoglobulin G (CARex-Fc). This gives rise to Ad aggregates and single particles which together enhance gene delivery up to 250-fold compared to adaptor-less viruses. A small interfering RNA knockdown of the clathrin heavy chain and quantitative electron microscopy of hematopoietic leukemia cells showed that the majority of Ads were phagocytosed as clusters of 1 to 3 microm in diameter and that about 10% of the particles entered cells by clathrin-mediated endocytosis. The clathrin knockdown did not affect phagocytosis but, surprisingly, inhibited viral escape from phagosomes. Similarly, blocking an early stage of clathrin-coated pit assembly inhibited phagosomal escape and infection but not aggregate uptake, unlike blocking of a late stage of clathrin-coated pit formation. We propose a cooperative interaction of clathrin-mediated endocytosis and phagocytosis triggering phagosomal lysis and infection.


Assuntos
Adenovírus Humanos/fisiologia , Endocitose/fisiologia , Receptores de IgG/fisiologia , Receptores Virais/fisiologia , Linhagem Celular , Clatrina/fisiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Humanos , Fagocitose/fisiologia
19.
J Virol ; 78(6): 3089-98, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990728

RESUMO

The species C adenovirus type 2 (Ad2) and Ad5 bind the coxsackievirus B Ad receptor and alphav integrin coreceptors and enter epithelial cells by clathrin-mediated endocytosis. This pathway is rapid and efficient. It leads to cell activation and the cholesterol-dependent formation of macropinosomes. Macropinosomes are triggered to release their contents when incoming Ad2 escapes from endosomes. Here, we show that cholesterol extraction of epithelial cells by methyl-beta-cyclodextrin (mbetaCD) treatment reduced Ad5-mediated luciferase expression approximately 4-fold. The addition of cholesterol to normal cells increased gene expression in a dose-dependent manner up to threefold, but it did not restore gene expression in mbetaCD-treated cells. mbetaCD had no effect in the presence of excess cholesterol, indicating that the inhibition of gene expression was due specifically to cholesterol depletion. Cholesterol depletion inhibited rapid Ad2 endocytosis, endosomal escape, and nuclear targeting, consistent with the notion that clathrin-dependent endocytosis of Ad2 is cholesterol dependent. In cholesterol-reduced cells, Ad2 internalized at a low rate, suggestive of an alternative, clathrin-independent, low-capacity entry pathway. While exogenous cholesterol completely restored rapid Ad2 endocytosis, macropinocytosis, and macropinosome disruption, it did not, surprisingly, restore viral escape from endosomes. Our results indicate that macropinosome disruption and endosomal escape of Ad2 are independent events in cells depleted of and then refilled with cholesterol, suggesting that viral escape from endosomes requires lipid-controlled membrane homeostasis, trafficking, or signaling.


Assuntos
Adenovírus Humanos/patogenicidade , Colesterol/metabolismo , Endocitose , Endossomos/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Citosol/virologia , Células HeLa , Humanos , Microscopia Eletrônica , Pinocitose
20.
J Virol ; 78(9): 4454-62, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15078926

RESUMO

Many human adenovirus (Ad) serotypes use the coxsackie B virus-Ad receptor (CAR). Recently, CD46 was suggested to be a receptor of species B Ad serotype 11 (Ad11), Ad14, Ad16, Ad21, Ad35, and Ad50. Using Sindbis virus-mediated cDNA library expression, we identify here the membrane cofactor protein CD46 as a surface receptor of species B Ad3. All four major CD46 transcripts and one minor CD46 transcript expressed in nucleated human cells were isolated. Rodent BHK cells stably expressing the BC1 form of CD46 bound radiolabeled Ad3 with a dissociation constant of 0.3 nM, identical to that of CD46-positive HeLa cells expressing twice as many Ad3 binding sites. Pull-down experiments with recombinant Ad3 fibers and a soluble form of the CD46 extracellular domain linked to the Fc portion of human immunoglobulin G (CD46ex-Fc) indicated direct interactions of the Ad3 fiber knob with CD46ex-Fc but not CARex-Fc (Fc-linked extracellular domain of CAR). Ad3 colocalized with cell surface CD46 in both rodent and human cells at the light and electron microscopy levels. Anti-CD46 antibodies and CD46ex-Fc inhibited Ad3 binding to CD46-expressing BHK cells more than 10-fold and to human cells 2-fold. In CD46-expressing BHK cells, wild-type Ad3 and a chimeric Ad consisting of the Ad5 capsid and the Ad3 fiber elicited dose-dependent cytopathic effects and transgene expression, albeit less efficiently than in human cells. Together, our results show that all of the major splice forms of CD46 are predominant and functional binding sites of Ad3 on CD46-expressing rodent and human cells but may not be the sole receptor of species B Ads on human cells. These results have implications for understanding viral pathogenesis and therapeutic gene delivery.


Assuntos
Adenovírus Humanos/metabolismo , Adenovírus Humanos/patogenicidade , Antígenos CD/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Virais/metabolismo , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Animais , Antígenos CD/genética , Sítios de Ligação , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Cricetinae , Efeito Citopatogênico Viral , Células HeLa , Humanos , Proteína Cofatora de Membrana , Glicoproteínas de Membrana/genética , Microscopia Confocal , Sorotipagem , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA