Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Environ Manage ; 187: 63-70, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27883940

RESUMO

This study was undertaken to evaluate the performance of four wastewater treatment plants/processes over a 4 year period. The wastewater flow evolution, energy consumption, and quality indicator parameters (BOD5, COD and TSS) at the inlet and outlet sites of the plants were determined. In comparing three domestic WWTPs with different wastewater treatment processes, the multivariate analyses (RDA and ANOVA) showed that although the Agareb plant received the highest pollution load, it displayed a high level of removal efficiency especially for COD, BOD, TSS, TKN and NH4+. It also revealed that the fluctuations in the wastewater composition and its contamination by varied industrial discharge could lead to the decrease in performance of the WWTP with activated sludge process as observed for the Southern Sfax plant. However, the electrolysis of the outlet water of Southern Sfax plant showed a significant improvement in COD removal.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Purificação da Água/métodos , Qualidade da Água , Análise da Demanda Biológica de Oxigênio , Sedimentos Geológicos/análise , Análise Multivariada , Nitrogênio/análise , Fósforo/análise , Tunísia , Instalações de Eliminação de Resíduos
2.
Extremophiles ; 20(3): 363-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27074936

RESUMO

Thirty-five extremely halophilic microbial strains isolated from crystallizer (TS18) and non-crystallizer (M1) ponds in the Sfax solar saltern in Tunisia were examined for their ability to exert antimicrobial activity. Antagonistic assays resulted in the selection of eleven strains that displayed such antimicrobial activity and they were further characterized. Three cases of cross-domain inhibition (archaea/bacteria or bacteria/archaea) were observed. Four archaeal strains exerted antimicrobial activity against several other strains. Three strains, for which several lines of evidence suggested the antimicrobial activity was, at least in part, due to peptide/protein agents (Halobacterium salinarum ETD5, Hbt. salinarum ETD8, and Haloterrigena thermotolerans SS1R12), were studied further. Optimal culture conditions for growth and antimicrobial production were determined. Using DNA amplification with specific primers, sequencing and RT-PCR analysis, Hbt. salinarum ETD5 and Hbt. salinarum ETD8 were shown to encode and express halocin S8, a hydrophobic antimicrobial peptide targeting halophilic archaea. Although the gene encoding halocin H4 was amplified from the genome of Htg. thermotolerans SS1R12, no transcript could be detected and the antimicrobial activity was most likely due to multiple antimicrobial compounds. This is also the first report that points to four different strains isolated from different geographical locations with the capacity to produce identical halocin S8 proteins.


Assuntos
Antibiose , Proteínas Arqueais/metabolismo , Halobacteriaceae/metabolismo , Peptídeos/metabolismo , Tolerância ao Sal , Peptídeos Catiônicos Antimicrobianos , Proteínas Arqueais/genética , Genoma Arqueal , Halobacteriaceae/isolamento & purificação , Halobacteriaceae/fisiologia , Peptídeos/genética , Águas Salinas , Microbiologia da Água
3.
J Basic Microbiol ; 56(4): 337-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26813681

RESUMO

A total of 54 halophilic strains were isolated from crystallizer TS18 (26 strains) and non-crystallizer M1 (28 strains) ponds and screened for their ability to produce protease, amylase, and lipase activities. Enzymatic assays allowed the selection of thirty-two active strains, among them, the ETR14 strain from TS18 showed maximum protease production yields and therefore, selected for further analysis. The results from 16S rRNA gene sequence analysis revealed that the strain belonged to Halorubrum ezzemoulense (Hrr. ezzemoulense) species. Further results indicated that optimum growth and protease production yields were obtained with 10-15% NaCl concentrations in the DSC-97 medium. The enzyme was also able to maintain high levels of protease activity at salt concentrations of up to 25%. While readily available carbon sources were noted to significantly reduce protease production, the combination between yeast extract and peptone enhanced protease excretion, which reached a maximum of 284 U ml(-1) at the end of the exponential growth phase. The enzyme exhibited optimum activity at pH 9 and 60 °C. The halophilic protease retained 87% of its initial activity after 1 h incubation at 70 °C and showed high stability over a wide range of pH, ranging from 7 to 10. This protease exhibited good temperature, pH, and salinity tolerance, which distinguishes it from other proteases previously described from other members of the holoarchaea genera and makes it a promising candidate for application in various industries.


Assuntos
Halorubrum/enzimologia , Halorubrum/isolamento & purificação , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Amilases/metabolismo , DNA Arqueal/genética , DNA Ribossômico/genética , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Lipase/metabolismo , Peptídeo Hidrolases/biossíntese , Lagoas/microbiologia , RNA Ribossômico 16S/genética , Salinidade , Tunísia
4.
Antonie Van Leeuwenhoek ; 106(4): 675-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064091

RESUMO

Prokaryotes in the superficial sediments are ecologically important microorganisms that are responsible for the decomposition, mineralization and subsequent recycling of organic matter. The aim of this study was to explore the phylogenetic and functional diversity of halophilic archaea and bacteria isolated from the superficial sediments of solar salterns at Sfax, Tunisia. Sixty four strains were isolated from crystallizer (TS18) and non-crystallizer (M1) ponds and submitted to genotypic characterization and evaluation by amplified ribosomal RNA restriction analysis (ARDRA) techniques. Our findings revealed that the archaeal diversity observed for 29 isolates generated five distinct patterns from the non-crystallizer M1 pond, with Halorubrum chaoviator as the most prevalent cultivable species. However, in the TS18 crystallizer pond, ten restriction patterns were observed, with the prevalence of haloarchaea EB27K, a not yet identified genotype. The construction of a neighbour-joining tree of 16S rRNA gene sequences resulted in the division of the potential new species into two major groups, with four strains closely related to the sequence of the unculturable haloarchaeon EB27K and one strain to the recently described Halovenus aranensis strain. The 35 bacterial strains observed in this work were present only in the non-crystallizer pond (M1) and presented two distinct ARDRA patterns. These strains belonged to the γ-proteobacteria subdivision, with members of Salicola marasensis (83%) being the most predominant species among the isolates. 16S rRNA gene sequencing revealed that Salicola strains displayed different degrees of homogeneity. The results from pulsed field gel electrophoresis assays showed that the Salicola isolates could be clustered in two distinct groups with different genome sizes.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Tunísia
5.
Appl Environ Microbiol ; 78(20): 7429-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904045

RESUMO

The microbial community inhabiting Sfax solar salterns on the east coast of Tunisia has been studied by means of different molecular and culture-dependent tools that have unveiled the presence of novel microbial groups as well as a community structure different from that of other coastal hypersaline environments. We have focused on the study of the viral assemblages of these salterns and their changes along the salinity gradient and over time. Viruses from three ponds (C4, M1, and TS) encompassing salinities from moderately hypersaline to saturated (around 14, 19, and 35%, respectively) were sampled in May and October 2009 and analyzed by transmission electron microscopy (TEM) and pulsed-field gel electrophoresis (PFGE). Additionally, for all three October samples and the May TS sample, viral metagenomic DNA was cloned in fosmids, end sequenced, and analyzed. Viral concentration, as well as virus-to-cell ratios, increased along the salinity gradient, with around 10(10) virus-like particles (VLPs)/ml in close-to-saturation ponds, which represents the highest viral concentration reported so far for aquatic systems. Four distinct morphologies could be observed with TEM (spherical, tailed, spindled, and filamentous) but with various proportions in the different samples. Metagenomic analyses indicated that every pond harbored a distinct viral assemblage whose G+C content could be roughly correlated with that of the active part of the microbial community that may have constituted the putative hosts. As previously reported for hypersaline metaviromes, most sequences did not have matches in the databases, although some were conserved among the Sfax metaviromes. BLASTx, BLASTp, and dinucleotide frequency analyses indicated that (i) factors additional to salinity could be structuring viral communities and (ii) every metavirome had unique gene contents and dinucleotide frequencies. Comparison with hypersaline metaviromes available in the databases indicated that the viral assemblages present in close-to-saturation environments located thousands of kilometers apart presented some common traits among them in spite of their differences regarding the putative hosts. A small core metavirome for close-to-saturation systems was found that contained 7 sequences of around 100 nucleotides (nt) whose function was not hinted at by in silico search results, although it most likely represents properties essential for hyperhalophilic viruses.


Assuntos
Biota , Metagenoma , Água do Mar/virologia , Composição de Bases , Clonagem Molecular , DNA Viral/química , DNA Viral/genética , Eletroforese em Gel de Campo Pulsado , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Análise de Sequência de DNA , Tunísia , Carga Viral
6.
Antonie Van Leeuwenhoek ; 101(4): 845-57, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22287033

RESUMO

The spatial and seasonal dynamics of the halophilic prokaryotic community was investigated in five ponds from Sfax solar saltern (Tunisia), covering a salinity gradient ranging from 20 to 36%. Fluorescence in situ hybridization indicated that, above 24% salinity, the prokaryotic community shifted from bacterial to archaeal dominance with a remarkable increase in the proportion of detected cells. Denaturing gradient gel electrophoresis (DGGE) profiles were rather similar in all the samples analyzed, except in the lowest salinity pond (around 20% salt) where several specific archaeal and bacterial phylotypes were detected. In spite of previous studies on these salterns, DGGE analysis unveiled the presence of microorganisms not previously described in these ponds, such as Archaea related to Natronomonas or bacteria related to Alkalimnicola, as well as many new sequences of Bacteroidetes. Some phylotypes, such as those related to Haloquadratum or to some Bacteroidetes, displayed a strong dependence of salinity and/or magnesium concentrations, which in the case of Haloquadratum could be related to the presence of ecotypes. Seasonal variability in the prokaryotic community composition was focused on two ponds with the lowest (20%) and the highest salinity (36%). In contrast to the crystallized pond, where comparable profiles between autumn 2007 and summer 2008 were obtained, the non-crystallized pond showed pronounced seasonal changes and a sharp succession of "species" during the year. Canonical correspondence analysis of biological and physicochemical parameters indicated that temperature was a strong factor structuring the prokaryotic community in the non-crystallizer pond, that had salinities ranging from 20 to 23.8% during the year.

7.
Braz J Microbiol ; 49(3): 534-543, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29429763

RESUMO

Infective endocarditis (IE) remains a severe and potentially fatal disease demanding sophisticated diagnostic strategies for detection of the causative microorganisms. The aim of the present study was to develop a broad-range 16S ribosomal RNA gene polymerase chain reaction in the routine diagnostic of IE for the early diagnosis of fatal disease. A broad-range PCR technique was selected and evaluated in terms of its efficiency in the diagnosis of endocarditis using 19 heart valves from patients undergoing cardiovascular surgeries at the Habib Bourguiba Hospital of Sfax, Tunisia, on the grounds of suspected IE. The results demonstrated the efficiency of this technique particularly in cases involving a limited number of bacteria since it helped to increase detection sensitivity. The technique proved to be efficient, particularly, in the bacteriological diagnosis of IE in contexts involving negative results from conventional culture methods and other contexts involving bacterial species that were not amenable to identification by phenotypic investigations. Indeed, the sequencing of the partial 16S ribosomal RNA gene revealed the presence of Bartonella henselae, Enterobacter sp., and Streptococcus pyogenes in three heart valves with the negative culture. It should be noted that the results obtained from the polymerase chain reaction-sequencing identification applied to the heart valve and the strain isolated from the same tissue were not consistent with the ones found by the conventional microbiological methods in the case of IE caused by Gemella morbillorum. In fact, the results from the molecular identification revealed the presence of Lactobacillus jensenii. Overall, the results have revealed that the proposed method is sensitive, reliable and might open promising opportunities for the early diagnosis of IE.


Assuntos
Bactérias/isolamento & purificação , Endocardite Bacteriana/microbiologia , Endocardite/microbiologia , Reação em Cadeia da Polimerase/métodos , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Endocardite/diagnóstico , Endocardite Bacteriana/diagnóstico , Valvas Cardíacas/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética
8.
Braz. j. microbiol ; 49(3): 534-543, July-Sept. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951818

RESUMO

Abstract Infective endocarditis (IE) remains a severe and potentially fatal disease demanding sophisticated diagnostic strategies for detection of the causative microorganisms. The aim of the present study was to develop a broad-range 16S ribosomal RNA gene polymerase chain reaction in the routine diagnostic of IE for the early diagnosis of fatal disease. A broad-range PCR technique was selected and evaluated in terms of its efficiency in the diagnosis of endocarditis using 19 heart valves from patients undergoing cardiovascular surgeries at the Habib Bourguiba Hospital of Sfax, Tunisia, on the grounds of suspected IE. The results demonstrated the efficiency of this technique particularly in cases involving a limited number of bacteria since it helped to increase detection sensitivity. The technique proved to be efficient, particularly, in the bacteriological diagnosis of IE in contexts involving negative results from conventional culture methods and other contexts involving bacterial species that were not amenable to identification by phenotypic investigations. Indeed, the sequencing of the partial 16S ribosomal RNA gene revealed the presence of Bartonella henselae, Enterobacter sp., and Streptococcus pyogenes in three heart valves with the negative culture. It should be noted that the results obtained from the polymerase chain reaction-sequencing identification applied to the heart valve and the strain isolated from the same tissue were not consistent with the ones found by the conventional microbiological methods in the case of IE caused by Gemella morbillorum. In fact, the results from the molecular identification revealed the presence of Lactobacillus jensenii. Overall, the results have revealed that the proposed method is sensitive, reliable and might open promising opportunities for the early diagnosis of IE.


Assuntos
Humanos , Masculino , Bactérias/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Endocardite/microbiologia , Endocardite Bacteriana/microbiologia , Filogenia , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Endocardite/diagnóstico , Endocardite Bacteriana/diagnóstico , Valvas Cardíacas/microbiologia , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA