Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Physiol ; 171(2): 1099-112, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208266

RESUMO

In Arabidopsis (Arabidopsis thaliana), transcriptional control of seed maturation involves three related regulators with a B3 domain, namely LEAFY COTYLEDON2 (LEC2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (ABI3/FUS3/LEC2 [AFLs]). Although genetic analyses have demonstrated partially overlapping functions of these regulators, the underlying molecular mechanisms remained elusive. The results presented here confirmed that the three proteins bind RY DNA elements (with a 5'-CATG-3' core sequence) but with different specificities for flanking nucleotides. In planta as in the moss Physcomitrella patens protoplasts, the presence of RY-like (RYL) elements is necessary but not sufficient for the regulation of the OLEOSIN1 (OLE1) promoter by the B3 AFLs. G box-like domains, located in the vicinity of the RYL elements, also are required for proper activation of the promoter, suggesting that several proteins are involved. Consistent with this idea, LEC2 and ABI3 showed synergistic effects on the activation of the OLE1 promoter. What is more, LEC1 (a homolog of the NF-YB subunit of the CCAAT-binding complex) further enhanced the activation of this target promoter in the presence of LEC2 and ABI3. Finally, recombinant LEC1 and LEC2 proteins produced in Arabidopsis protoplasts could form a ternary complex with NF-YC2 in vitro, providing a molecular explanation for their functional interactions. Taken together, these results allow us to propose a molecular model for the transcriptional regulation of seed genes by the L-AFL proteins, based on the formation of regulatory multiprotein complexes between NF-YBs, which carry a specific aspartate-55 residue, and B3 transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Sementes/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Bases , Sítios de Ligação/genética , Briófitas/metabolismo , DNA de Plantas/metabolismo , Imunoprecipitação , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Protoplastos/metabolismo
2.
Planta ; 242(1): 53-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25820267

RESUMO

MAIN CONCLUSION: The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded. The physical stability of OBs is a consequence of the interactions between proteins and phospholipids. A detailed study of OB characteristics in mature seeds as well as throughout seed development was carried out on two contrasting rapeseed genotypes Amber and Warzanwski. These two accessions were chosen because they differ dramatically in (1) crushing ability, (2) oil extraction yield and, (3) the stability of purified OBs. Warzanwski has higher crushing ability, better oil extraction yield and less stable purified OBs than Amber. OB morphology was investigated in situ using fluorescence microscopy, transmission electron microscopy and pulsed field gradient NMR. During seed development, OB diameter first increased and then decreased 30 days after pollination in both Amber and Warzanwski embryos. In mature seeds, Amber OBs were significantly smaller. The protein, phospholipid and sterol composition of the hemi-membrane was compared between the two accessions. Amber OBs were enriched with H-oleosins and steroleosins, suggesting increased coverage of the OB surface consistent with their higher stability. The nature and composition of phospholipids and sterols in Amber OBs suggest that the hemi-membrane would have a more rigid structure than that of Warzanwski OBs.


Assuntos
Brassica rapa/embriologia , Brassica rapa/genética , Gotículas Lipídicas/metabolismo , Óleos de Plantas/isolamento & purificação , Sementes/anatomia & histologia , Sementes/metabolismo , Brassica rapa/anatomia & histologia , Eletroforese em Gel Bidimensional , Genótipo , Espectroscopia de Ressonância Magnética , Fosfolipídeos/metabolismo , Fitosteróis/metabolismo , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/ultraestrutura , Tocoferóis/metabolismo
3.
Proteomics ; 13(12-13): 1836-49, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589365

RESUMO

Oleaginous seeds store lipids in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids bound by proteins embedded in a phospholipid monolayer. OB proteins are well conserved in plants and have long been grouped into only two categories: structural proteins or enzymes. Recent work, however, which identified other classes of proteins associated with OBs, clearly shows that this classification is obsolete. Proteomics-mediated OB protein identification is facilitated in plants for which the genome is sequenced and annotated. However, it is not clear whether this knowledge can be dependably transposed to less well-characterized plants, including the well-established commercial sources of seed oil as well as the many others being proposed as novel sources for biodiesel, especially in Africa and Asia. Toward an update of the current data available on OB proteins this review discusses (i) the specific difficulties for proteomic studies of organelles; (ii) a 2012 census of the proteins found in seed OBs from various crops; (iii) the oleosin composition of OBs and their role in organelle stability; (iv) PTM of OB proteins as an emerging field of investigation; and finally we describe the emerging model of the OB proteome from oilseed crops.


Assuntos
Produtos Agrícolas , Óleos de Plantas , Proteínas de Plantas , Sementes , Processamento de Proteína Pós-Traducional , Proteoma
4.
Proteomics ; 9(12): 3268-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19562800

RESUMO

Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.


Assuntos
Brassica napus/química , Corpos de Inclusão/química , Proteínas de Armazenamento de Sementes/análise , Sementes/química , Sequência de Aminoácidos , Arabidopsis/genética , Brassica napus/genética , Brassica rapa/química , Brassica rapa/genética , Proteínas de Ligação ao Cálcio/análise , Immunoblotting , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/análise , Processamento de Proteína Pós-Traducional , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/genética , Alinhamento de Sequência
5.
FEMS Yeast Res ; 9(3): 428-38, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19220478

RESUMO

Proteomic approaches on lipid bodies have led to the identification of proteins associated with this compartment, showing that, rather than the inert fat depot, lipid droplets appear as complex dynamic organelles with roles in metabolism control and cell signaling. We focused our investigations on caleosin [Arabidopsis thaliana caleosin 1 (AtClo1)], a minor protein of the Arabidopsis thaliana seed lipid body. AtClo1 shares an original triblock structure, which confers to the protein the capacity to insert at the lipid body surface. In addition, AtClo1 possesses a calcium-binding domain. The study of plants deficient in caleosin revealed its involvement in storage lipid degradation during seed germination. Using Saccharomyces cerevisiae as a heterologous expression system, we investigated the potential role of AtClo1 in lipid body biogenesis and filling. The green fluorescent protein-tagged protein was correctly targeted to lipid bodies. We observed an increase in the number and size of lipid bodies. Moreover, transformed yeasts accumulated more fatty acids (+46.6%). We confirmed that this excess of fatty acids was due to overaccumulation of lipid body neutral lipids, triacylglycerols and steryl esters. We showed that the original intrinsic properties of AtClo1 protein were sufficient to generate a functional lipid body membrane and to promote overaccumulation of storage lipids in yeast oil bodies.


Assuntos
Arabidopsis/genética , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Metabolismo dos Lipídeos , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fusão Gênica Artificial , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Organelas/metabolismo , Organelas/ultraestrutura , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
6.
J Agric Food Chem ; 55(24): 10008-15, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17966978

RESUMO

Oleosins are hydrophobic proteins from oleaginous seeds, surrounding and stabilizing oil bodies. They are known to display interesting interfacial properties. Specific sera were raised against four different A. thaliana oleosins and used in dot-blot assays for oleosin quantification. These assays were used to set up extraction of oleosins from A. thaliana seeds. One mixture of chloroform/methanol gave optimal oleosin extraction. Extracted proteins represented 9% of seed proteins and were identified by immunoblot and proteomic analyses. Oleosins accounted for 79% of the extracted proteins. This simple one-step procedure allows selective extraction and concentration of oleosins from seeds without tedious oil body purification. Oleosin extract was indeed used to demonstrate the presence of the rare oleosin S5 in mature seeds. Moreover, this method will be useful to investigate the potential use of oleosins as emulsifier and to question their possible allergenicity.


Assuntos
Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Arabidopsis/química , Clorofórmio/química , Immunoblotting , Metanol/química , Óleos de Plantas/metabolismo , Sementes/química , Solubilidade
7.
Plant Sci ; 250: 198-204, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27457996

RESUMO

Increasing yield and quality of seed storage compounds in a sustainable way is a key challenge for our societies. Genome-wide analyses conducted in both monocot and dicot angiosperms emphasized drastic transcriptional switches that occur during seed development. In Arabidopsis thaliana, a reference species, genetic and molecular analyses have demonstrated the key role of LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factors (TFs), in controlling gene expression programs essential to accomplish seed maturation and the accumulation of storage compounds. Here, we summarize recent progress obtained in the characterization of these LAFL proteins, their regulation, partners and target genes. Moreover, we illustrate how these evolutionary conserved TFs can be used to engineer new crops with altered seed compositions and point out the current limitations. Last, we discuss about the interest of investigating further the environmental and epigenetic regulation of this network for the coming years.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sementes/metabolismo , Fatores de Transcrição/metabolismo
8.
J Plant Physiol ; 168(17): 2015-20, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21803444

RESUMO

Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards.


Assuntos
Brassica napus/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Brassica napus/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Fosfolipídeos/metabolismo , Proteínas de Plantas/genética , Proteômica , Sementes/crescimento & desenvolvimento , Fatores de Tempo , Triglicerídeos/metabolismo
9.
J Agric Food Chem ; 56(14): 5871-9, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18558702

RESUMO

Apoproteins of low-density lipoproteins (LDL) and soluble proteins (livetins) contained in hen egg yolk plasma have been demonstrated as being essential to the interfacial and emulsifying properties of yolk. The knowledge of their structure is necessary to better understand these properties. Purified protein fractions were separated by SDS-PAGE or 2D-PAGE and identified through the LC-MS/MS of their trypsin peptides. Hen blood apolipoprotein B gives rise to nine different apoproteins in LDL after maturation and proteolysis. Among these apoproteins, two protein fragments appeared to be less accessible to proteases and could be enriched in beta-sheets and firmly associated with lipids. Plasma soluble proteins were constituted by approximately 45% of yolk immunoglobulins with a high heterogeneity of the variable regions of both heavy and light chains, 41% of glycoproteins constituted by YGP42 and YGP40, 14% of albumins, and one new minor protein we called YGP30, showing 75% similarity to YGP40.


Assuntos
Apolipoproteínas B/química , Proteínas do Ovo/análise , Lipoproteínas LDL/química , Sequência de Aminoácidos , Animais , Apolipoproteínas B/metabolismo , Galinhas , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Endopeptidase K/metabolismo , Feminino , Lipoproteínas LDL/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
10.
Proteomics ; 6(5): 1450-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16470660

RESUMO

Lipid particles (LP) of all types of cells are a depot of neutral lipids. The present investigation deals with the isolation of LP from the yeast Yarrowia lipolytica and the characterization of their lipid and protein composition. Properties of LP varied depending on the carbon source. LP from glucose-grown cells revealed a mean diameter of 650 nm with a hydrophobic core mainly formed of triacylglycerols (TAG) and a minor amount of steryl esters (SE). Oleic acid was the major fatty acid species esterified in LP. When cells were grown on oleic acid, LP size increased 3.8-fold, the particles exhibited a significantly lower ratio of TAG to SE, and the relative amount of oleic acid in LP lipids increased compared to cells grown on glucose. Analysis of LP proteins revealed an increasing number of polypeptides when cells were shifted from glucose- to oleic acid-containing medium. Twenty-one major LP proteins were identified under both growth conditions, and additional nine polypeptides were specific for growth on oleic acid. Identification of these proteins by MS and comparison of the deduced ORFs to those from Saccharomyces cerevisiae revealed that most proteins of Y. lipolytica LP are involved in lipid metabolism. LP proteins specific for growth on oleic acid are also enzymes involved in lipid metabolism, but some of them are also components of the intracellular traffic machinery. Thus, proteom analysis of LP proteins suggests involvement of this compartment in different cell biological processes.


Assuntos
Carbono/metabolismo , Corpos de Inclusão/química , Lipídeos/química , Yarrowia/química , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Glucose/metabolismo , Corpos de Inclusão/metabolismo , Dados de Sequência Molecular , Ácido Oleico/metabolismo , Fases de Leitura Aberta , Peptídeos/análise , Peptídeos/genética , Yarrowia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA