RESUMO
BACKGROUND: Long-term exposure to ambient air pollution has been linked with all-cause mortality and cardiovascular and respiratory diseases. Suggestive associations between ambient air pollutants and neurodegeneration have also been reported, but due to the small effect and relatively rare outcomes evidence is yet inconclusive. Our aim was to investigate the associations between long-term air pollution exposure and mortality from neurodegenerative diseases. METHODS: A Dutch national cohort of 10.8 million adults aged ≥30 years was followed from 2013 until 2019. Annual average concentrations of air pollutants (ultra-fine particles (UFP), nitrogen dioxide (NO2), fine particles (PM2.5 and PM10) and elemental carbon (EC)) were estimated at the home address at baseline, using land-use regression models. The outcome variables were mortality due to amyotrophic lateral sclerosis (ALS), Parkinson's disease, non-vascular dementia, Alzheimer's disease, and multiple sclerosis (MS). Hazard ratios (HR) were estimated using Cox models, adjusting for individual and area-level socio-economic status covariates. RESULTS: We had a follow-up of 71 million person-years. The adjusted HRs for non-vascular dementia were significantly increased for NO2 (1.03; 95% confidence interval (CI) 1.02-1.05) and PM2.5 (1.02; 95%CI 1.01-1.03) per interquartile range (IQR; 6.52 and 1.47 µg/m3, respectively). The association with PM2.5 was also positive for ALS (1.02; 95%CI 0.97-1.07). These associations remained positive in sensitivity analyses and two-pollutant models. UFP was not associated with any outcome. No association with air pollution was found for Parkinson's disease and MS. Inverse associations were found for Alzheimer's disease. CONCLUSION: Our findings, using a cohort of more than 10 million people, provide further support for associations between long-term exposure to air pollutants (PM2.5 and particularly NO2) and mortality of non-vascular dementia. No associations were found for Parkinson and MS and an inverse association was observed for Alzheimer's disease.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Doenças Neurodegenerativas , Material Particulado , Humanos , Países Baixos/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Masculino , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Doenças Neurodegenerativas/mortalidade , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/epidemiologia , Pessoa de Meia-Idade , Feminino , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Idoso , Material Particulado/análise , Material Particulado/efeitos adversos , AdultoRESUMO
BACKGROUND: Few epidemiological studies so far have investigated the role of long-term exposure to ultrafine particles (UFP) in inhalant and food allergy development. OBJECTIVES: The purpose of this study was to assess the association between UFP exposure and allergic sensitization to inhalant and food allergens in children up to 16 years old in the Netherlands. METHODS: 2295 participants of a prospective birth cohort with IgE measurements to common inhalant and food allergens at ages 4, 8, 12 and/or 16 were included in the study. Annual average UFP concentrations were estimated for the home addresses at birth and at the time of the IgE measurements using land-use regression models. Generalized estimating equations were used for the assessment of overall and age-specific associations between UFP exposure and allergic sensitization. Additionally, single- and two-pollutant models with NO2, PM2.5, PM2.5 absorbance and PM10 were assessed. RESULTS: We found no significant associations between UFP exposure and allergic sensitization to inhalant and food allergens (OR (95% CI) ranging from 1.02 (0.95-1.10) to 1.05 (0.98-1.12), per IQR increment). NO2, PM2.5, PM2.5 absorbance and PM10 showed significant associations with sensitization to food allergens (OR (95% CI) ranging from 1.09 (1.00-1.20) to 1.23 (1.06-1.43) per IQR increment). NO2, PM2.5, PM2.5 absorbance and PM10 were not associated with sensitization to inhalant allergens. For NO2, PM2.5 and PM2.5 absorbance, the associations with sensitization to food allergens persisted in two-pollutant models with UFP. CONCLUSION: This study found no association between annual average exposure to UFP and allergic sensitization in children up to 16 years of age. NO2, PM2.5, PM2.5 absorbance and PM10 were associated with sensitization to food allergens.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Hipersensibilidade Alimentar , Recém-Nascido , Feminino , Humanos , Criança , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Estudos Prospectivos , Dióxido de Nitrogênio/análise , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/etiologia , Imunoglobulina E , Exposição Ambiental , Poluição do Ar/análiseRESUMO
BACKGROUND: Air pollution is a large environmental health hazard whose exposure and health effects are unequally distributed among individuals. This is, at least in part, due to gene-environment interactions, but few studies exist. Thus, the current study aimed to explore genetic susceptibility to airway inflammation from short-term air pollution exposure through mechanisms of gene-environment interaction involving the SFTPA, GST and NOS genes. METHODS: Five thousand seven hundred two adults were included. The outcome measure was fraction of exhaled nitric oxide (FeNO), at 50 and 270 ml/s. Exposures were ozone (O3), particulate matter < 10 µm (PM10), and nitrogen dioxide (NO2) 3, 24, or 120-h prior to FeNO measurement. In the SFTPA, GST and NOS genes, 24 single nucleotide polymorphisms (SNPs) were analyzed for interaction effects. The data were analyzed using quantile regression in both single-and multipollutant models. RESULTS: Significant interactions between SNPs and air pollution were found for six SNPs (p < 0.05): rs4253527 (SFTPA1) with O3 and NOx, rs2266637 (GSTT1) with NO2, rs4795051 (NOS2) with PM10, NO2 and NOx, rs4796017 (NOS2) with PM10, rs2248814 (NOS2) with PM10 and rs7830 (NOS3) with NO2. The marginal effects on FeNO for three of these SNPs were significant (per increase of 10 µg/m3):rs4253527 (SFTPA1) with O3 (ß: 0.155, 95%CI: 0.013-0.297), rs4795051 (NOS2) with PM10 (ß: 0.073, 95%CI: 0.00-0.147 (single pollutant), ß: 0.081, 95%CI: 0.004-0.159 (multipollutant)) and NO2 (ß: -0.084, 95%CI: -0.147; -0.020 (3 h), ß: -0.188, 95%CI: -0.359; -0.018 (120 h)) and rs4796017 (NOS2) with PM10 (ß: 0.396, 95%CI: 0.003-0.790). CONCLUSIONS: Increased inflammatory response from air pollution exposure was observed among subjects with polymorphisms in SFTPA1, GSTT1, and NOS genes, where O3 interacted with SFTPA1 and PM10 and NO2/NOx with the GSTT1 and NOS genes. This provides a basis for the further exploration of biological mechanisms as well as the identification of individuals susceptible to the effects of outdoor air pollution.
Assuntos
Poluição do Ar , Predisposição Genética para Doença , Adulto , Humanos , Dióxido de Nitrogênio/efeitos adversos , Poluição do Ar/efeitos adversos , Óxido Nítrico , Inflamação/induzido quimicamente , Inflamação/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Health implications of long-term exposure to ubiquitously present ultrafine particles (UFP) are uncertain. The aim of this study was to investigate the associations between long-term UFP exposure and natural and cause-specific mortality (including cardiovascular disease (CVD), respiratory disease, and lung cancer) in the Netherlands. METHODS: A Dutch national cohort of 10.8 million adults aged ≥ 30 years was followed from 2013 until 2019. Annual average UFP concentrations were estimated at the home address at baseline, using land-use regression models based on a nationwide mobile monitoring campaign performed at the midpoint of the follow-up period. Cox proportional hazard models were applied, adjusting for individual and area-level socio-economic status covariates. Two-pollutant models with the major regulated pollutants nitrogen dioxide (NO2) and fine particles (PM2.5 and PM10), and the health relevant combustion aerosol pollutant (elemental carbon (EC)) were assessed based on dispersion modelling. RESULTS: A total of 945,615 natural deaths occurred during 71,008,209 person-years of follow-up. The correlation of UFP concentration with other pollutants ranged from moderate (0.59 (PM2.5)) to high (0.81 (NO2)). We found a significant association between annual average UFP exposure and natural mortality [HR 1.012 (95 % CI 1.010-1.015), per interquartile range (IQR) (2723 particles/cm3) increment]. Associations were stronger for respiratory disease mortality [HR 1.022 (1.013-1.032)] and lung cancer mortality [HR 1.038 (1.028-1.048)] and weaker for CVD mortality [HR 1.005 (1.000-1.011)]. The associations of UFP with natural and lung cancer mortality attenuated but remained significant in all two-pollutant models, whereas the associations with CVD and respiratory mortality attenuated to the null. CONCLUSION: Long-term UFP exposure was associated with natural and lung cancer mortality among adults independently from other regulated air pollutants.