Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676099

RESUMO

Label-free and multiphoton micro-endoscopy can transform clinical histopathology by providing an in situ tool for diagnostic imaging and surgical treatment in diseases such as cancer. Key to a multiphoton imaging-based micro-endoscopic device is the optical fiber, for distortion-free and efficient delivery of ultra-short laser pulses to the sample and effective signal collection. In this work, we study a new hollow-core (air-filled) double-clad anti-resonant fiber (DC-ARF) as a high-performance candidate for multiphoton micro-endoscopy. We compare the fiber characteristics of the DC-ARF with a single-clad anti-resonant fiber (SC-ARF) and a solid core fiber (SCF). In this work, while the DC-ARF and the SC-ARF enable low-loss (<0.2 dBm-1), close to dispersion-free excitation pulse delivery (<10% pulse width increase at 900 nm per 1 m fiber) without any induced non-linearities, the SCF resulted in spectral broadening and pulse-stretching (>2000% of pulse width increase at 900 nm per 1 m fiber). An ideal optical fiber endoscope needs to be several meters long and should enable both excitation and collection through the fiber. Therefore, we performed multiphoton imaging on endoscopy-compatible 1 m and 3 m lengths of fiber in the back-scattered geometry, wherein the signals were collected either directly (non-descanned detection) or through the fiber (descanned detection). Second harmonic images were collected from barium titanate crystals as well as from biological samples (mouse tail tendon). In non-descanned detection conditions, the ARFs outperformed the SCF by up to 10 times in terms of signal-to-noise ratio of images. Significantly, only the DC-ARF, due to its high numerical aperture (NA) of 0.45 and wide-collection bandwidth (>1 µm), could provide images in the de-scanned detection configuration desirable for endoscopy. Thus, our systematic characterization and comparison of different optical fibers under different image collection configurations, confirms and establishes the utility of DC-ARFs for high-performing label-free multiphoton imaging-based micro-endoscopy.

2.
Opt Express ; 26(7): 8095-8112, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715782

RESUMO

Optical superoscillatory imaging, allowing unlabelled far-field super-resolution, has in recent years become reality. Instruments have been built and their super-resolution imaging capabilities demonstrated. The question is no longer whether this can be done, but how well: what resolution is practically achievable? Numerous works have optimised various particular features of superoscillatory spots, but in order to probe the limits of superoscillatory imaging we need to simultaneously optimise all the important spot features: those that define the resolution of the system. We simultaneously optimise spot size and its intensity relative to the sidebands for various fields of view, giving a set of best compromises for use in different imaging scenarios. Our technique uses the circular prolate spheroidal wave functions as a basis set on the field of view, and the optimal combination of these, representing the optimal spot, is found using a multi-objective genetic algorithm. We then introduce a less computationally demanding approach suitable for real-time use in the laboratory which, crucially, allows independent control of spot size and field of view. Imaging simulations demonstrate the resolution achievable with these spots. We show a three-order-of-magnitude improvement in the efficiency of focusing to achieve the same resolution as previously reported results, or a 26 % increase in resolution for the same efficiency of focusing.

3.
Biomed Opt Express ; 14(9): 4520-4530, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791276

RESUMO

We report an all-fiberized 1840-nm thulium-fiber-laser source, comprising a dissipative-soliton mode-locked seed laser and a chirped-pulse-amplification system for label-free biological imaging through nonlinear microscopy. The mode-locked thulium fiber laser generated dissipative-soliton pulses with a pre-chirped duration of 7 ps and pulse energy of 1 nJ. A chirped-pulse fiber-amplification system employing an in-house-fabricated, short-length, single-mode, high-absorption, thulium fiber delivered pulses with energies up to 105 nJ. The pulses were capable of being compressed to 416 fs by passing through a grating pair. Imaging of mouse tissue and human bone samples was demonstrated using this source via third-harmonic generation microscopy.

4.
J Biomed Opt ; 28(12): 126007, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38155703

RESUMO

Significance: Rapid advances in medical imaging technology, particularly the development of optical systems with non-linear imaging modalities, are boosting deep tissue imaging. The development of reliable standards and phantoms is critical for validation and optimization of these cutting-edge imaging techniques. Aim: We aim to design and fabricate flexible, multi-layered hydrogel-based optical standards and evaluate advanced optical imaging techniques at depth. Approach: Standards were made using a robust double-network hydrogel matrix consisting of agarose and polyacrylamide. The materials generated ranged from single layers to more complex constructs consisting of up to seven layers, with modality-specific markers embedded between the layers. Results: These standards proved useful in the determination of the axial scaling factor for light microscopy and allowed for depth evaluation for different imaging modalities (conventional one-photon excitation fluorescence imaging, two-photon excitation fluorescence imaging, second harmonic generation imaging, and coherent anti-Stokes Raman scattering) achieving actual depths of 1550, 1550, 1240, and 1240 µm, respectively. Once fabricated, the phantoms were found to be stable for many months. Conclusions: The ability to image at depth, the phantom's robustness and flexible layered structure, and the ready incorporation of "optical markers" make these ideal depth standards for the validation of a variety of imaging modalities.


Assuntos
Hidrogéis , Dispositivos Ópticos , Imagens de Fantasmas , Microscopia/métodos , Imagem Óptica
5.
Biomed Opt Express ; 12(2): 1010-1019, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33680556

RESUMO

We demonstrate a continuous wave (CW) seeded synchronization-free optical parametric amplifier (OPA) pumped by a picosecond, 1 µm laser and show its performance when used as a simple yet powerful source for label-free coherent anti-Stokes Raman scattering (CARS), concurrent second harmonic generation (SHG), and two-photon fluorescence microscopy in an epi-detection geometry. The average power level of above 175 mW, spectral resolution of 8 cm-1, and 2 ps pulse duration are well optimized for CARS microscopy in bio-science and bio-medical imaging systems. Our OPA is a much simpler setup than either the "gold-standard" laser and optical parametric oscillator (OPO) combination traditionally used for CARS imaging, or the more recently developed OPA systems pumped with femtosecond pulses [1]. Rapid and accurate tuning between resonances was achieved by changing the poled channels and temperature of the periodically-poled lithium niobate (PPLN) OPA crystal together with the OPA seed wavelength. The Pump-Stokes frequency detuning range fully covered the C-H stretching band used for the imaging of lipids. By enabling three multiphoton techniques using a compact, synchronization free laser source, our work paves the way for the translation of label-free multi-photon microscopy imaging from biomedical research to an imaging based diagnostic tool for use in the healthcare arena.

6.
Optica ; 8(5): 674-685, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34239949

RESUMO

Superresolution (SR) optical microscopy has allowed the investigation of many biological structures below the diffraction limit; however, most of the techniques are hampered by the need for fluorescent labels. Nonlinear label-free techniques such as second-harmonic generation (SHG) provide structurally specific contrast without the addition of exogenous labels, allowing observation of unperturbed biological systems. We use the photonic nanojet (PNJ) phenomena to achieve SR-SHG. A resolution of ∼ λ / 6 with respect to the fundamental wavelength, that is, a ∼ 2.3 -fold improvement over conventional or diffraction-limited SHG under the same imaging conditions is achieved. Crucially we find that the polarization properties of excitation are maintained in a PNJ. This is observed in experiment and simulations. This may have widespread implications to increase sensitivity by detection of polarization-resolved SHG by observing anisotropy in signals. These new, to the best of our knowledge, findings allowed us to visualize biological SHG-active structures such as collagen at an unprecedented and previously unresolvable spatial scale. Moreover, we demonstrate that the use of an array of self-assembled high-index spheres overcomes the issue of a limited field of view for such a method, allowing PNJ-assisted SR-SHG to be used over a large area. Dysregulation of collagen at the nanoscale occurs in many diseases and is an underlying cause in diseases such as lung fibrosis. Here we demonstrate that pSR-SHG allows unprecedented observation of changes at the nanoscale that are invisible by conventional diffraction-limited SHG imaging. The ability to nondestructively image SHG-active biological structures without labels at the nanoscale with a relatively simple optical method heralds the promise of a new tool to understand biological phenomena and drive drug discovery.

7.
J Org Chem ; 75(20): 6771-81, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20860348

RESUMO

The efficient synthesis and photophysical properties of a series of ambipolar donor-acceptor-donor systems is described where the acceptor is dibenzothiophene S,S-dioxide and the donor is fluorene, carbazole, or arylamine. The systems exhibit intramolecular charge transfer (ICT) states (of variable ICT character strengths) leading to fluorescence emission ranging from deep blue to green with moderate to high photoluminescence quantum yields. The emission properties can be effectively tuned by systematically changing the position of substitution on both donor and acceptor units (which affects the extent of conjugation) and the redox potentials of the donor units. The results are supported by cyclic voltammetric data and TD-DFT calculations.


Assuntos
Aminas/química , Carbazóis/química , Fluorenos/química , Fluorescência , Tiofenos/química , Tiofenos/síntese química , Eletroquímica , Transporte de Elétrons , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxirredução , Teoria Quântica , Estereoisomerismo
8.
Phys Chem Chem Phys ; 12(27): 7371-7, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20464032

RESUMO

Charge transfer interactions between PbS nanocrystals (NCs) and tetrathiafulvalene (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) are studied using optical spectroscopy. Selective quenching of PbS NC photoluminescence (PL) by TTF is observed and related to the relative alignment of the highest occupied molecular orbital (HOMO) of TTF and the PbS NC 1s(h) energy level. TCNQ is also found to quench PbS NC PL irrespective of the NC bandgap. A ground-state charge transfer mechanism between PbS and TCNQ is proposed to account for the observed quenching indirectly supported by observed changes in the absorption spectra of PbS-TTF and PbS-TCNQ solutions. Additionally, a second emission band in the visible spectral region ( approximately 675 nm) is found upon excitation of PbS-TCNQ solutions. These results are of interest for the future design of charge-transfer systems for use in hybrid organic-inorganic systems.

9.
Sci Rep ; 9(1): 5561, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944358

RESUMO

Coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) are non-linear techniques that allow label-free, non-destructive and non-invasive imaging for cellular and tissue analysis. Although live-imaging studies have been performed previously, concerns that they do not cause any changes at the molecular level in sensitive biological samples have not been addressed. This is important especially for stem cell differentiation and tissue engineering, if CARS/SHG microscopy is to be used as a non-invasive, label-free tool for assessment of the developing neo-tissue. In this work, we monitored the differentiation of human fetal-femur derived skeletal cells into cartilage in three-dimensional cultures using CARS and SHG microscopy and demonstrate the live-imaging of the same developing neo-tissue over time. Our work conclusively establishes that non-linear label-free imaging does not alter the phenotype or the gene expression at the different stages of differentiation and has no adverse effect on human skeletal cell growth and behaviour. Additionally, we show that CARS microscopy allows imaging of different molecules of interest, including lipids, proteins and glycosaminoglycans, in the bioengineered neo-cartilage. These studies demonstrate the label-free and truly non-invasive nature of live CARS and SHG imaging and their value and translation potential in skeletal research, regeneration medicine and tissue engineering.


Assuntos
Cartilagem/diagnóstico por imagem , Imagem Molecular/métodos , Imagem Multimodal/métodos , Engenharia Tecidual/métodos , Cartilagem/metabolismo , Diferenciação Celular , Condrogênese/genética , Fêmur/citologia , Fêmur/embriologia , Expressão Gênica , Glicosaminoglicanos/análise , Humanos , Imagem Molecular/instrumentação , Imagem Multimodal/instrumentação , Proteínas/análise , Análise Espectral Raman/métodos , Técnicas de Cultura de Tecidos/métodos
10.
Integr Biol (Camb) ; 10(10): 635-645, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30225469

RESUMO

The unique properties of skeletal stem cells have attracted significant attention in the development of strategies for skeletal regeneration. However, there remains a crucial unmet need to develop quantitative tools to elucidate skeletal cell development and monitor the formation of regenerated tissues using non-destructive techniques in 3D. Label-free methods such as coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG) and two-photon excited auto-fluorescence (TPEAF) microscopy are minimally invasive, non-destructive, and present new powerful alternatives to conventional imaging techniques. Here we report a combination of these techniques in a single multimodal system for the temporal assessment of cartilage formation by human skeletal cells. The evaluation of bioengineered cartilage, with a new parameter measuring the amount of collagen per cell, collagen fibre structure and chondrocyte distribution, was performed using the 3D non-destructive platform. Such 3D label-free temporal quantification paves the way for tracking skeletal cell development in real-time and offers a paradigm shift in tissue engineering and regenerative medicine applications.


Assuntos
Osso e Ossos/embriologia , Cartilagem/fisiologia , Condrogênese/fisiologia , Imageamento Tridimensional , Engenharia Tecidual/métodos , Engenharia Biomédica , Diferenciação Celular , Condrócitos , Colágeno/química , Perfilação da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Oxirredução , Medicina Regenerativa , Análise Espectral Raman , Células-Tronco/citologia , Fatores de Tempo
11.
Elife ; 72018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29966587

RESUMO

Matrix stiffening with downstream activation of mechanosensitive pathways is strongly implicated in progressive fibrosis; however, pathologic changes in extracellular matrix (ECM) that initiate mechano-homeostasis dysregulation are not defined in human disease. By integrated multiscale biomechanical and biological analyses of idiopathic pulmonary fibrosis lung tissue, we identify that increased tissue stiffness is a function of dysregulated post-translational collagen cross-linking rather than any collagen concentration increase whilst at the nanometre-scale collagen fibrils are structurally and functionally abnormal with increased stiffness, reduced swelling ratio, and reduced diameter. In ex vivo and animal models of lung fibrosis, dual inhibition of lysyl oxidase-like (LOXL) 2 and LOXL3 was sufficient to normalise collagen fibrillogenesis, reduce tissue stiffness, and improve lung function in vivo. Thus, in human fibrosis, altered collagen architecture is a key determinant of abnormal ECM structure-function, and inhibition of pyridinoline cross-linking can maintain mechano-homeostasis to limit the self-sustaining effects of ECM on progressive fibrosis.


Assuntos
Aminoácido Oxirredutases/antagonistas & inibidores , Colágeno/química , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/química , Fibrose Pulmonar/tratamento farmacológico , Reticulina/química , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Aminoácidos/química , Animais , Fenômenos Biomecânicos , Estudos de Casos e Controles , Colágeno/metabolismo , Colágeno/ultraestrutura , Reagentes de Ligações Cruzadas/química , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Homeostase/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Mecanotransdução Celular , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Proteína-Lisina 6-Oxidase , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Reticulina/metabolismo , Reticulina/ultraestrutura , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia
12.
Adv Mater ; 25(27): 3707-14, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23703877

RESUMO

Organic light-emitting diodes (OLEDs) have their performance limited by the number of emissive singlet states created upon charge recombination (25%). Recently, a novel strategy has been proposed, based on thermally activated up-conversion of triplet to singlet states, yielding delayed fluorescence (TADF), which greatly enhances electroluminescence. The energy barrier for this reverse intersystem crossing mechanism is proportional to the exchange energy (ΔEST ) between the singlet and triplet states; therefore, materials with intramolecular charge transfer (ICT) states, where it is known that the exchange energy is small, are perfect candidates. However, here it is shown that triplet states can be harvested with 100% efficiency via TADF, even in materials with ΔEST of more than 20 kT (where k is the Boltzmann constant and T is the temperature) at room temperature. The key role played by lone pair electrons in achieving this high efficiency in a series of ICT molecules is elucidated. The results show the complex photophysics of efficient TADF materials and give clear guidelines for designing new emitters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA