Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(2): E176-85, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548172

RESUMO

Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.


Assuntos
Anopheles/imunologia , Anopheles/virologia , Arbovírus/imunologia , Arbovírus/patogenicidade , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/transmissão , Animais , Anopheles/genética , Infecções por Arbovirus/imunologia , Infecções por Arbovirus/transmissão , Arbovírus/genética , Sistema Digestório/imunologia , Sistema Digestório/microbiologia , Sistema Digestório/virologia , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Insetos Vetores/genética , Insetos Vetores/imunologia , Insetos Vetores/virologia , Janus Quinases/imunologia , Microbiota , Vírus O'nyong-nyong/genética , Vírus O'nyong-nyong/imunologia , Vírus O'nyong-nyong/patogenicidade , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia
2.
Malar J ; 16(1): 21, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28069024

RESUMO

BACKGROUND: The changing malaria situation in Madagascar requires additional knowledge on the physiology and behaviour of local mosquito vectors. However, the absence of established colonies for several anopheline species present in Madagascar constitutes a limiting factor. To avoid labour intensive work and uncertainty for success of establishing Anopheles colonies from Malagasy species, field collections of blood-fed females and in-tube forced oviposition were combined to reliably produce large numbers of F1 progeny. METHODS: Blood-fed females were captured in zebu stables or open zebu parks. Oviposition was induced by enclosing gravid females in eppendorf tubes as initially described for Anopheles funestus. The effect of cold anaesthesia on inducing in-tube forced oviposition and on egg yield was assessed for five Anopheles species, namely Anopheles coustani, An. funestus, Anopheles mascarensis, Anopheles arabiensis and Anopheles squamosus. The production of eggs from in-tube forced oviposition and standard egg laying in cages was compared. RESULTS: For the five anopheline species studied, the in-tube forced oviposition method had different efficacy ranging from 35.6 to 71.1% females willing to lay eggs in tubes. Interestingly, prior anaesthesia increased significantly the proportion of ovipositing females for An. mascarensis. Prior anaesthesia has a marginal effect on the number of eggs produced. However, the overall yield in eggs collected using the in-tube forced oviposition method largely exceeds the number of eggs that can be produced by females free to oviposit in cages. CONCLUSION: The efficiency of the method allowed the production of F1 progeny in numbers sufficiently large for developing detailed analyses of the five species tested, including behavioural studies, insecticide resistance assessment and molecular characterization, as well as vector competence studies. It should be applicable to other anopheline species difficult to colonize.


Assuntos
Anopheles/crescimento & desenvolvimento , Entomologia/métodos , Mosquitos Vetores/crescimento & desenvolvimento , Animais , Bovinos , Feminino , Abrigo para Animais , Madagáscar
3.
PLoS Pathog ; 9(11): e1003790, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278025

RESUMO

A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs) for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.


Assuntos
Anopheles/parasitologia , Antimaláricos , Peptídeos Catiônicos Antimicrobianos , Venenos de Abelha , Abelhas/química , Proteínas de Insetos , Malária Falciparum/tratamento farmacológico , Oocistos , Plasmodium berghei , Plasmodium falciparum , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Venenos de Abelha/química , Venenos de Abelha/farmacologia , Linhagem Celular , Feminino , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Masculino , Camundongos
4.
Proc Natl Acad Sci U S A ; 109(28): E1922-30, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22689959

RESUMO

Anopheles stephensi mosquitoes expressing m1C3, m4B7, or m2A10 single-chain antibodies (scFvs) have significantly lower levels of infection compared to controls when challenged with Plasmodium falciparum, a human malaria pathogen. These scFvs are derived from antibodies specific to a parasite chitinase, the 25 kDa protein and the circumsporozoite protein, respectively. Transgenes comprising m2A10 in combination with either m1C3 or m4B7 were inserted into previously-characterized mosquito chromosomal "docking" sites using site-specific recombination. Transgene expression was evaluated at four different genomic locations and a docking site that permitted tissue- and sex-specific expression was researched further. Fitness studies of docking site and dual scFv transgene strains detected only one significant fitness cost: adult docking-site males displayed a late-onset reduction in survival. The m4B7/m2A10 mosquitoes challenged with P. falciparum had few or no sporozoites, the parasite stage infective to humans, in three of four experiments. No sporozoites were detected in m1C3/m2A10 mosquitoes in challenge experiments when both genes were induced at developmentally relevant times. These studies support the conclusion that expression of a single copy of a dual scFv transgene can completely inhibit parasite development without imposing a fitness cost on the mosquito.


Assuntos
Anopheles/genética , Anopheles/imunologia , Anopheles/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica , Plasmodium falciparum/metabolismo , Anticorpos de Cadeia Única/química , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Culicidae , Feminino , Engenharia Genética/métodos , Hibridização in Situ Fluorescente , Masculino , Modelos Genéticos , Plasmídeos/metabolismo , Plasmodium falciparum/genética , Esporozoítos/metabolismo , Transgenes
5.
Parasite ; 31: 31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896103

RESUMO

Anopheles coustani has long been recognized as a secondary malaria vector in Africa. It has recently been involved in the transmission of both Plasmodium falciparum and P. vivax in Madagascar. As most secondary malaria vectors, An. coustani mainly bites outdoors, which renders the control of this mosquito species difficult using classical malaria control measures, such as the use of bed nets or indoor residual spraying of insecticides. For a better understanding of the biology and vector competence of a vector species, it is useful to rear the species in the laboratory. The absence of a colony hinders the assessment of the bionomics of a species and the development of adapted control strategies. Here, we report the first successful establishment of an An. coustani colony from mosquitoes collected in Madagascar. We used a forced copulation procedure as this mosquito species will not mate in cages. We describe our mosquito colonization procedure with detailed biological features concerning larval to adult development and survival, recorded over the first six critical generations. The procedure should be easily applicable to An. coustani from different African countries, facilitating local investigation of An. coustani vector competence and insecticide resistance using the colony as a reference.


Title: Colonisation d'Anopheles coustani, vecteur négligé du paludisme à Madagascar. Abstract: Anopheles coustani est reconnu depuis longtemps comme un vecteur secondaire du paludisme en Afrique. Il a récemment été impliqué dans la transmission de Plasmodium falciparum et de P. vivax à Madagascar. Comme la plupart des vecteurs secondaires du paludisme, An. coustani pique principalement à l'extérieur, ce qui rend difficile le contrôle de cette espèce de moustique par les mesures classiques de lutte contre le paludisme telles que l'utilisation de moustiquaires ou la pulvérisation intradomiciliaire d'insecticides à effet rémanent. Pour une meilleure compréhension de la biologie et de la compétence vectorielle d'une espèce vectrice, il est utile d'élever l'espèce en laboratoire. L'absence de colonie gêne l'évaluation de la bionomie d'une espèce et le développement de stratégies de contrôle adaptées. Nous rapportons ici le premier établissement réussi d'une colonie d' An. coustani issue de moustiques collectés à Madagascar. Nous avons utilisé une procédure de copulation forcée car cette espèce de moustique ne s'accouple pas en cage. Nous décrivons notre procédure de colonisation des moustiques avec des caractéristiques biologiques détaillées concernant le développement et la survie des stades larvaires aux adultes, enregistrées au cours des six premières générations critiques. La procédure devrait être facilement applicable aux An. coustani de différents pays africains, facilitant les enquêtes locales sur la compétence vectorielle d'An. coustani et sa résistance aux insecticides, en utilisant une colonie comme référence.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Anopheles/fisiologia , Anopheles/crescimento & desenvolvimento , Anopheles/classificação , Madagáscar , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Feminino , Masculino , Malária/transmissão , Malária/prevenção & controle , Larva
6.
Malar J ; 11: 393, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23181931

RESUMO

BACKGROUND: Anopheles plumbeus has been recognized as a minor vector for human malaria in Europe since the beginning of the 20th century. In recent years this tree hole breeding mosquito species appears to have exploited novel breeding sites, including large and organically rich man-made containers, with consequently larger mosquito populations in close vicinity to humans. This lead to investigate whether current populations of An. plumbeus would be able to efficiently transmit Plasmodium falciparum, the parasite responsible for the most deadly form of malaria. METHODS: Anopheles plumbeus immatures were collected from a liquid manure pit in Switzerland and transferred as adults to the CEPIA (Institut Pasteur, France) where they were fed on P. falciparum gametocytes produced in vitro. Anopheles gambiae mosquitoes served as controls. Development of P. falciparum in both mosquito species was followed by microscopical detection of oocysts on mosquito midguts and by sporozoite detection in the head/thorax by PCR and microscopy. RESULTS: A total of 293 wild An. plumbeus females from four independent collections successfully fed through a membrane on blood containing P. falciparum gametocytes. Oocysts were observed in mosquito midguts and P. falciparum DNA was detected in head-thorax samples in all four experiments, demonstrating, on a large mosquito sample, that An. plumbeus is indeed receptive to P. falciparum NF54 and able to produce sporozoites. Importantly, the proportion of sporozoites-infected An. plumbeus was almost similar to that of An. gambiae (31 to 88% An. plumbeus versus 67 to 97% An. gambiae). However, the number of sporozoites produced was significantly lower in infected An. plumbeus. CONCLUSION: The results show that a sample of field-caught An. plumbeus has a moderate to high receptivity towards P. falciparum. Considering the increased mobility of humans between Europe and malaria endemic countries and changes in environment and climate, these data strongly suggest that An. plumbeus could act as a vector for malaria and thus significantly contribute to increasing the malaria transmission risk in Central-Western Europe. In locations showing high vulnerability to the presence of gametocyte carriers, the risk of transmission of malaria by An. plumbeus should be considered.


Assuntos
Anopheles/crescimento & desenvolvimento , Anopheles/parasitologia , Vetores de Doenças , Plasmodium falciparum/crescimento & desenvolvimento , Estruturas Animais/parasitologia , Animais , Feminino , Humanos , Microscopia , Suíça
7.
PLoS Pathog ; 5(9): e1000576, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19750215

RESUMO

Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share > or =50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely related eukaryotic pathogens than has been previously recognized.


Assuntos
Anopheles/imunologia , Proteínas de Insetos/imunologia , Malária/imunologia , Plasmodium/patogenicidade , Transativadores/imunologia , Análise de Variância , Animais , Anopheles/genética , Proteínas de Caenorhabditis elegans , Criança , Pré-Escolar , Feminino , Humanos , Proteínas de Insetos/genética , Proteínas de Membrana , Modelos Imunológicos , Transdução de Sinais/imunologia , Estatísticas não Paramétricas
8.
Proc Natl Acad Sci U S A ; 105(50): 19631-6, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19060216

RESUMO

In female insects, the steroid hormone 20-hydroxyecdysone (20E) plays a major role in activating vitellogenesis, a process required for egg development. By contrast with vertebrates, production of large amounts of hormonal steroids has not been reported in adult male insects. In the present study, we analyzed steroidogenesis in both male and female adult of the malaria mosquito Anopheles gambiae and we found that A. gambiae male mosquitoes produce high amounts of the steroid hormone 20E. Importantly, we found that male accessory glands, but not testes, are the source of 20E. Moreover, this steroid hormone is stored in male accessory glands and delivered to females during mating. These findings suggest that male 20E may not act as a true male sex steroid, but more likely as an allohormone. Our results give new insights into species-specific physiological processes that govern the reproductive success of the malaria mosquito. This could thus lead to the identification of new target genes for manipulating male and/or female reproductive success, a promising way to reduce or eliminate mosquito population and therefore to control malaria transmission.


Assuntos
Anopheles/fisiologia , Copulação/fisiologia , Ecdisterona/biossíntese , Hormônios Esteroides Gonadais/biossíntese , Vitelogênese , Animais , Anopheles/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ecdisterona/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Dados de Sequência Molecular
9.
Parasit Vectors ; 13(1): 430, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843082

RESUMO

BACKGROUND: Malaria is still a heavy public health concern in Madagascar. Few studies combining parasitology and entomology have been conducted despite the need for accurate information to design effective vector control measures. In a Malagasy region of moderate to intense transmission of both Plasmodium falciparum and P. vivax, parasitology and entomology have been combined to survey malaria transmission in two nearby villages. METHODS: Community-based surveys were conducted in the villages of Ambohitromby and Miarinarivo at three time points (T1, T2 and T3) during a single malaria transmission season. Human malaria prevalence was determined by rapid diagnostic tests (RDTs), microscopy and real-time PCR. Mosquitoes were collected by human landing catches and pyrethrum spray catches and the presence of Plasmodium sporozoites was assessed by TaqMan assay. RESULTS: Malaria prevalence was not significantly different between villages, with an average of 8.0% by RDT, 4.8% by microscopy and 11.9% by PCR. This was mainly due to P. falciparum and to a lesser extent to P. vivax. However, there was a significantly higher prevalence rate as determined by PCR at T2 ([Formula: see text] = 7.46, P = 0.025). Likewise, mosquitoes were significantly more abundant at T2 ([Formula: see text] = 64.8, P < 0.001), especially in Ambohitromby. At T1 and T3 mosquito abundance was higher in Miarinarivo than in Ambohitromby ([Formula: see text] = 14.92, P < 0.001). Of 1550 Anopheles mosquitoes tested, 28 (1.8%) were found carrying Plasmodium sporozoites. The entomological inoculation rate revealed that Anopheles coustani played a major contribution in malaria transmission in Miarinarivo, being responsible of 61.2 infective bites per human (ib/h) during the whole six months of the survey, whereas, it was An. arabiensis, with 36 ib/h, that played that role in Ambohitromby. CONCLUSIONS: Despite a similar malaria prevalence in two nearby villages, the entomological survey showed a different contribution of An. coustani and An. arabiensis to malaria transmission in each village. Importantly, the suspected secondary malaria vector An. coustani, was found playing the major role in malaria transmission in one village. This highlights the importance of combining parasitology and entomology surveys for better targeting local malaria vectors. Such study should contribute to the malaria pre-elimination goal established under the 2018-2022 National Malaria Strategic Plan.


Assuntos
Anopheles/parasitologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Animais , Vetores de Doenças , Madagáscar/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/parasitologia , Malária Vivax/transmissão , Microscopia , Mosquitos Vetores/parasitologia , Reação em Cadeia da Polimerase/métodos , Coloração e Rotulagem/métodos
10.
Insect Biochem Mol Biol ; 120: 103339, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105779

RESUMO

Hemocytes, the immune cells in mosquitoes, participate in immune defenses against pathogens including malaria parasites. Mosquito hemocytes can also be infected by arthropod-borne viruses but the pro- or anti-viral nature of this interaction is unknown. Although there has been progress on hemocyte characterization during pathogen infection in mosquitoes, the specific contribution of hemocytes to immune responses and the hemocyte-specific functions of immune genes and pathways remain unresolved due to the lack of genetic tools to manipulate gene expression in these cells specifically. Here, we used the Gal4-UAS system to characterize the activity of the Drosophila hemocyte-specific hemolectin promoter in the adults of Anopheles gambiae, the malaria mosquito. We established an hml-Gal4 driver line that we further crossed to a fluorescent UAS responder line, and examined the expression pattern in the adult progeny driven by the hml promoter. We show that the hml regulatory region drives hemocyte-specific transgene expression in a subset of hemocytes, and that transgene expression is triggered after a blood meal. The hml promoter drives transgene expression in differentiating prohemocytes as well as in differentiated granulocytes. Analysis of different immune markers in hemocytes in which the hml promoter drives transgene expression revealed that this regulatory region could be used to study phagocytosis as well as melanization. Finally, the hml promoter drives transgene expression in hemocytes in which o'nyong-nyong virus replicates. Altogether, the Drosophila hml promoter constitutes a good tool to drive transgene expression in hemocyte only and to analyze the function of these cells and the genes they express during pathogen infection in Anopheles gambiae.


Assuntos
Anopheles/genética , Proteínas de Drosophila/farmacologia , Drosophila melanogaster/química , Expressão Gênica , Hemócitos/metabolismo , Lectinas/farmacologia , Animais , Anopheles/metabolismo , Linhagem Celular , Feminino
11.
Sci Rep ; 9(1): 4669, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874601

RESUMO

Human malaria, which remains a major public health problem, is transmitted by a subset of Anopheles mosquitoes belonging to only three out of eight subgenera: Anopheles, Cellia and Nyssorhynchus. Unlike almost every other insect species, males of some Anopheles species produce steroid hormones which are transferred to females during copulation to influence their reproduction. Steroids are consequently a potential target for malaria vector control. Here, we analysed the evolution of sexually-transferred steroids and their effects on female reproductive traits across Anopheles by using a set of 16 mosquito species (five Anopheles, eight Cellia, and three Nyssorhynchus), including malaria vector and non-vector species. We show that male steroid production and transfer are specific to the Cellia and therefore represent a synapomorphy of this subgenus. Furthermore, we show that mating-induced effects in females are variable across species and differences are not correlated with sexually-transferred steroids or with Anopheles ability to transmit human malaria. Overall, our findings highlight that Anopheles mosquitoes have evolved different reproductive strategies, independently of being a malaria vector or not.


Assuntos
Anopheles/genética , Hormônios Esteroides Gonadais/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Anopheles/metabolismo , Evolução Biológica , Copulação/fisiologia , Evolução Molecular , Feminino , Hormônios/metabolismo , Insetos Vetores/genética , Malária/transmissão , Masculino , Mosquitos Vetores/genética , Reprodução , Especificidade da Espécie , Esteroides/metabolismo
12.
Microbes Infect ; 10(8): 845-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18656409

RESUMO

Reduction of transmission is critical for effective malaria control. Transmission blocking vaccines, which are intended to prevent the parasites from infecting the mosquito vectors, could target mosquito antigens that are required for the successful development of the parasite in its vector. Here we review recent advances in the identification of promising candidate antigens for a mosquito-based transmission blocking vaccine.


Assuntos
Culicidae/parasitologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Malária/transmissão , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Animais , Humanos
13.
Malar J ; 7: 81, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18489748

RESUMO

BACKGROUND: The relationship between malaria and obesity are largely unknown. This is partly due to the fact that malaria occurs mainly in tropical areas where, until recently, obesity was not prevalent. It now appears, however, that obesity is emerging as a problem in developing countries. To investigate the possible role of obesity on the host-parasite response to malarial infection, this study applied a murine model, which uses the existence of genetically well characterized obese mice. METHODS: The receptivity of obese homozygous ob/ob mice was compared to the receptivity of control heterozygous ob/+ lean mice after a single injection of Plasmodium berghei ANKA sporozoites. Both parasitaemia and mortality in response to infection were recorded. RESULTS: The control mice developed the expected rapid neurological syndromes associated with the ANKA strain, leading to death after six days, in absence of high parasitaemia. The obese mice, on the other hand, did not develop cerebral malaria and responded with increasing parasitaemia, which produced severe anemia leading to death 18-25 days after injection. CONCLUSION: The observed major differences in outward symptoms for malarial infection in obese versus control mice indicate a link between obesity and resistance to the infection which could be addressed by malariologists studying human malaria.


Assuntos
Malária Cerebral , Camundongos Obesos , Plasmodium berghei/patogenicidade , Anemia/parasitologia , Anemia/fisiopatologia , Animais , Encéfalo/parasitologia , Humanos , Malária/imunologia , Malária/mortalidade , Malária/parasitologia , Malária/fisiopatologia , Malária Cerebral/imunologia , Malária Cerebral/mortalidade , Malária Cerebral/parasitologia , Malária Cerebral/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos/imunologia , Camundongos Obesos/parasitologia , Parasitemia/imunologia , Parasitemia/mortalidade , Parasitemia/parasitologia , Parasitemia/fisiopatologia
14.
Insect Biochem Mol Biol ; 96: 1-9, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578046

RESUMO

The ability to manipulate the Anopheles gambiae genome and alter gene expression effectively and reproducibly is a prerequisite for functional genetic analysis and for the development of novel control strategies in this important disease vector. However, in vivo transgenic analysis in mosquitoes is limited by the lack of promoters active ubiquitously. To address this, we used the GAL4/UAS system to investigate the promoter of the An. gambiae Polyubiquitin-c (PUBc) gene and demonstrated its ability to drive expression in mosquito cell culture before incorporation into An. gambiae transgenic driver lines. To generate such lines, piggyBac-mediated insertion was used to identify genomic regions able to sustain widespread expression and to create φC31 docking lines at these permissive sites. Patterns of expression induced by PUBc-GAL4 drivers carrying single intergenic insertions were assessed by crossing with a novel responder UAS-mCD8:mCherry line that was created by φC31-mediated integration. Amongst the drivers created at single, unique chromosomal integration loci, two were isolated that induced differential expression levels in a similar multiple-tissue spatial pattern throughout the mosquito life cycle. This work expands the tools available for An. gambiae functional analysis by providing a novel promoter for investigating phenotypes resulting from widespread multi-tissue expression, as well as identifying and tagging genomic sites that sustain broad transcriptional activity.


Assuntos
Anopheles , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos , Estágios do Ciclo de Vida/fisiologia , Poliubiquitina , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Especificidade de Órgãos/fisiologia , Poliubiquitina/genética , Poliubiquitina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Microbes Infect ; 9(12-13): 1454-62, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17913537

RESUMO

Exposure to vectors of infectious diseases has been associated with antibody responses against salivary antigens of arthropods among people living in endemic areas. This immune response has been proposed as a surrogate marker of exposure to vectors appropriate for evaluating the protective efficacy of antivectorial devices. The existence and potential use of such antibody responses in travellers transiently exposed to Plasmodium or arbovirus vectors in tropical areas has never been investigated. The IgM and IgG antibody responses of 88 French soldiers against the saliva of Anopheles gambiae and Aedes aegypti were evaluated before and after a 5-month journey in tropical Africa. Antibody responses against Anopheles and Aedes saliva increased significantly in 41% and 15% of the individuals, respectively, and appeared to be specific to the mosquito genus. A proteomic and immunoproteomic analysis of anopheles and Aedes saliva allowed for the identification of some antigens that were recognized by most of the exposed individuals. These results suggest that antibody responses to the saliva of mosquitoes could be considered as specific surrogate markers of exposure of travellers to mosquito vectors that transmit arthropod borne infections.


Assuntos
Aedes/imunologia , Anopheles/imunologia , Antígenos/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Saliva/imunologia , Viagem , Adulto , Aedes/classificação , Sequência de Aminoácidos , Animais , Antígenos/química , Côte d'Ivoire , França , Gabão , Humanos , Insetos Vetores/imunologia , Masculino , Militares , Dados de Sequência Molecular , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/imunologia
16.
Am J Trop Med Hyg ; 76(3): 475-80, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17360870

RESUMO

Melanization is an immune response of mosquitoes that could potentially limit Plasmodium development. That mosquitoes rarely melanize Plasmodium falciparum in natural populations might result from immuno-suppression by the parasite, as has been observed in Aedes aegypti mosquitoes infected by Plasmodium gallinaceum. We tested this possibility in Anopheles gambiae mosquitoes infected by P. falciparum by comparing the ability to melanize a Sephadex bead of infected mosquitoes, of mosquitoes that had fed on infectious blood without becoming infected, and of control mosquitoes fed on uninfected blood. Rather than being immuno-suppressed, infected mosquitoes tended to have a stronger melanization response than mosquitoes in which the infection failed and than control mosquitoes, possibly because of immune activation after previous exposure to invading parasites. This finding suggests that P. falciparum relies on immune evasion rather than immuno-suppression to avoid being melanized and confirms that natural malaria transmission systems differ from laboratory models of mosquito-Plasmodium interactions.


Assuntos
Anopheles/parasitologia , Malária Falciparum/transmissão , Melaninas/metabolismo , Animais , Anopheles/imunologia , Criança , Pré-Escolar , Feminino , Humanos
18.
FEBS Lett ; 580(8): 1988-92, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-16530187

RESUMO

Salivary glands are the ultimate site of development in the insect of mosquito born pathogens such as Plasmodium. Mosquito salivary glands also secrete components involved in anti-haemostatic activities and allergic reactions. We investigated the feasibility of RNAi as a tool for functional analysis of genes expressed in Anopheles gambiae salivary glands. We show that specific gene silencing in salivary glands requires the use of large amounts of dsRNA, condition that differs from those for efficient RNAi in other mosquito tissues. Using this protocol, we demonstrated the role of AgApy, which encodes an apyrase, in the probing behaviour of An. gambiae.


Assuntos
Anopheles/genética , Interferência de RNA , Glândulas Salivares/metabolismo , Animais , Anopheles/anatomia & histologia , Apirase/genética , Apirase/metabolismo , Masculino , Agregação Plaquetária , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Coelhos , Proteínas Recombinantes de Fusão/metabolismo
19.
Insect Biochem Mol Biol ; 36(10): 769-78, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17027843

RESUMO

We have performed a global genome expression analysis of mosquito responses to CM-25 Sephadex beads and identified 27 regulated immune genes, including several anti-Plasmodium factors and other components with likely roles in melanization. Silencing of two bead injection responsive genes, TEP1 and LRIM1, which encode proteins known to mediate Plasmodium killing, significantly compromised the ability to melanize the beads. In contrast, silencing of two Plasmodium protective c-type lectins, CTL4 and CTLMA2, did not affect bead melanization. This data suggest that the anti-Plasmodium factors have dual functions, as determinants of both Plasmodium killing and melanization of the parasite and other foreign bodies, while the Plasmodium protective factors are specifically utilized by the parasite for evasion of mosquito defense mechanisms.


Assuntos
Anopheles/imunologia , Dextranos/imunologia , Imunidade Inata , Proteínas de Insetos/fisiologia , Melaninas/metabolismo , Animais , Anopheles/genética , Anopheles/parasitologia , Genoma de Inseto , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Cinética , Microesferas , Modelos Imunológicos , Plasmodium/imunologia , Interferência de RNA
20.
Malar J ; 5: 23, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16569221

RESUMO

BACKGROUND: The Plasmodium species that infect rodents, particularly Plasmodium berghei and Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act as vectors of human plasmodia in South East Asia, Africa and South America show different susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively. However, it was reported that P. yoelii can infect the South American mosquito, Anopheles albimanus, while P. berghei cannot. METHODS: P. berghei lines that express the green fluorescent protein were used to screen for mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph and extracted salivary glands. RESULTS: A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A. albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection. CONCLUSION: Fluorescent Plasmodium parasites can be used to rapidly screen susceptible mosquitoes. These results open the way to develop a laboratory model in countries where importation of A. gambiae and A. stephensi is not allowed.


Assuntos
Anopheles/parasitologia , Proteínas de Fluorescência Verde/metabolismo , Insetos Vetores/parasitologia , Malária/transmissão , Plasmodium berghei/metabolismo , Plasmodium yoelii/metabolismo , Animais , Proteínas de Fluorescência Verde/genética , Hemolinfa/parasitologia , Camundongos , Plasmodium berghei/genética , Plasmodium yoelii/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA