Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 160, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410420

RESUMO

The CO2 Human Emissions project has generated realistic high-resolution 9 km global simulations for atmospheric carbon tracers referred to as nature runs to foster carbon-cycle research applications with current and planned satellite missions, as well as the surge of in situ observations. Realistic atmospheric CO2, CH4 and CO fields can provide a reference for assessing the impact of proposed designs of new satellites and in situ networks and to study atmospheric variability of the tracers modulated by the weather. The simulations spanning 2015 are based on the Copernicus Atmosphere Monitoring Service forecasts at the European Centre for Medium Range Weather Forecasts, with improvements in various model components and input data such as anthropogenic emissions, in preparation of a CO2 Monitoring and Verification Support system. The relative contribution of different emissions and natural fluxes towards observed atmospheric variability is diagnosed by additional tagged tracers in the simulations. The evaluation of such high-resolution model simulations can be used to identify model deficiencies and guide further model improvements.

2.
J Geophys Res Atmos ; 126(15): e2020JD034163, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35866004

RESUMO

In this study, we show that limitations in the representation of land cover and vegetation seasonality in the European Centre for Medium-Range Weather Forecasting (ECMWF) model are partially responsible for large biases (up to ∼10°C, either positive or negative depending on the region) on the simulated daily maximum land surface temperature (LST) with respect to satellite Earth Observations (EOs) products from the Land Surface Analysis Satellite Application Facility. The error patterns were coherent in offline land-surface and coupled land-atmosphere simulations, and in ECMWF's latest generation reanalysis (ERA5). Subsequently, we updated the ECMWF model's land cover characterization leveraging on state-of-the-art EOs-the European Space Agency Climate Change Initiative land cover data set and the Copernicus Global Land Services leaf area index. Additionally, we tested a clumping parameterization, introducing seasonality to the effective low vegetation coverage. The updates reduced the overall daily maximum LST bias and unbiased root-mean-squared errors. In contrast, the implemented updates had a neutral impact on daily minimum LST. Our results also highlighted the complex regional heterogeneities in the atmospheric sensitivity to land cover and vegetation changes, particularly with issues emerging over eastern Brazil and northeastern Asia. These issues called for a re-calibration of model parameters (e.g., minimum stomatal resistance, roughness length, rooting depth), along with a revision of several model assumptions (e.g., snow shading by high vegetation).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA