Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(13): 5530-5537, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771509

RESUMO

Epitaxial growth is a powerful tool for synthesizing heterostructures and integrating multiple functionalities. However, interfacial mixing can readily occur and significantly modify the properties of layered structures, particularly for those containing energy storage materials with smaller cations. Here, we show a two-step sequence involving the growth of an epitaxial LiCoO2 cathode layer followed by the deposition of a binary transition metal oxide. Orientation-controlled epitaxial synthesis of the model solid-state-electrolyte Li2WO4 and anode material Li4Ti5O12 occurs as WO3 and TiO2 nucleate and react with Li ions from the underlying cathode. We demonstrate that this lithiation-assisted epitaxy approach can be used for energy materials discovery and exploring different combinations of epitaxial interfaces that can serve as well-defined model systems for mechanistic studies of energy storage and conversion processes.

2.
Angew Chem Int Ed Engl ; 62(30): e202304648, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221959

RESUMO

Mechanistic studies of substrate insertion into dimeric [(NHC)CuH]2 (NHC=N-heterocyclic carbene) complexes with two bridging hydrides have been shown to require dimer dissociation to generate transient, highly reactive (NHC)Cu-H monomers in solution. Using single-crystal to single-crystal (SC-SC) transformations, we discovered a new pathway of stepwise insertion of CO2 into [(NHC)CuH]2 without complete dissociation of the dimer. The first CO2 insertion into dimeric [(IPr*OMe)CuH]2 (IPr*OMe=N,N'-bis(2,6-bis(diphenylmethyl)-4-methoxy-phenyl)imidazole-2-ylidene) produced a dicopper formate hydride [(IPr*OMe)Cu]2 (µ-1,3-O2 CH)(µ-H). A second CO2 insertion produced a dicopper bis(formate), [(IPr*OMe)Cu]2 (µ-1,3-O2 CH)(µ-1,1-O2 CH), containing two different bonding modes of the bridging formate. These dicopper formate complexes are inaccessible from solution reactions since the dicopper core cleanly ruptures to monomeric complexes when dissolved in a solvent.

3.
Angew Chem Int Ed Engl ; 62(28): e202303770, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37145989

RESUMO

Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal-organic frameworks, pre-organized multi-ion "secondary building units" (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q3 8 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q3 8 are stabilized by hydrogen bonds with surrounding H2 O and tetramethylammonium ions (TMA+ ). When Q3 8 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x (Q3 8 )⋅n H2 O](x-8) clathrate complexes into step edges on the crystals.

4.
J Phys Chem A ; 126(3): 444-452, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35030001

RESUMO

The thermodynamic properties of key compounds Mg(B3H8)2, MgB2H6, MgB10H10, Mg(B11H14)2, Mg3(B3H6)2, and MgB12H12, proposed to be formed in the release of hydrogen from magnesium borohydride Mg(BH4)2 and the uptake of hydrogen by MgB2, have been investigated using solid-state density functional theory (DFT) calculations. More accurate tretment of the cell-size effects with respect to the entropies was also investigated in order to improve the accuracy of the thermodynamic properties of complex borohydrides. We find that the zero-point energy corrections can lower the electronic energies of reaction by 20-30 kJ/(mol H2) for these intermediates, while adding the thermal and entropy contibutions results in a total decrease of up to ∼50 kJ/(mol H2). Although our treatment lowers the calculated formation energy of Mg(B3H8)2, it is still too high to explain the experimental observation of B3H8-. We discuss possible reasons for this disparity and propose that the formation of B3H8- and H- in a disordered amorphous phase has a large energy difference compared to the phase-separated Mg(B3H8)2 and MgH2 considered in calculations. A comparison of the experimental and NMR chemical shifts calculated within a DFT approach for known species Mg(BH4)2, Mg(B3H8)2, Mg(B11H14)2, MgB10H10, and MgB12H12 provides validation for predicting the chemical shifts of the other compounds which are yet to be confirmed experimentally. These include MgB2H6 and the proposed trianion species Mg3(B3H6)2 that both have favorable thermodynamics for reversible hydrogen storage in Mg(BH4)2 without the formation of MgH2 as a coproduct which could phase separate and inhibit rehydrogenation.

5.
Nano Lett ; 21(19): 8324-8331, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34546060

RESUMO

Rare earth nickelates including LaNiO3 are promising catalysts for water electrolysis to produce oxygen gas. Recent studies report that Fe substitution for Ni can significantly enhance the oxygen evolution reaction (OER) activity of LaNiO3. However, the role of Fe in increasing the activity remains ambiguous, with potential origins that are both structural and electronic in nature. On the basis of a series of epitaxial LaNi1-xFexO3 thin films synthesized by molecular beam epitaxy, we report that Fe substitution tunes the Ni oxidation state in LaNi1-xFexO3 and a volcano-like OER trend is observed, with x = 0.375 being the most active. Spectroscopy and ab initio modeling reveal that high-valent Fe3+δ cationic species strongly increase the transition-metal (TM) 3d bandwidth via Ni-O-Fe bridges and enhance TM 3d-O 2p hybridization, boosting the OER activity. These studies deepen our understanding of structural and electronic contributions that give rise to enhanced OER activity in perovskite oxides.

6.
Inorg Chem ; 60(21): 16223-16232, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644061

RESUMO

Aluminate salts precipitated from caustic alkaline solutions exhibit a correlation between the anionic speciation and the identity of the alkali cation in the precipitate, with the aluminate ions occurring either in monomeric (Al(OH)4-) or dimeric (Al2O(OH)62-) forms. The origin of this correlation is poorly understood as are the roles that oligomeric aluminate species play in determining the solution structure, prenucleation clusters, and precipitation pathways. Characterization of aluminate solution speciation with vibrational spectroscopy results in spectra that are difficult to interpret because the ions access a diverse and dynamic configurational space. To investigate the Al(OH)4- and Al2O(OH)62- anions within a well-defined crystal lattice, inelastic neutron scattering (INS) and Raman spectroscopic data were collected and simulated by density functional theory for K2[Al2O(OH)6], Rb2[Al2O(OH)6], and Cs[Al(OH) 4]·2H2O. These structures capture archetypal solution aluminate species: the first two salts contain dimeric Al2O(OH)62- anions, while the third contains the monomeric Al(OH)4- anion. Comparisons were made to the INS and Raman spectra of sodium aluminate solutions frozen in a glassy state. In contrast to solution systems, the crystal lattice of the salts results in well-defined vibrations and associated resolved bands in the INS spectra. The use of a theory-guided analysis of the INS of this solid alkaline aluminate series revealed that differences were related to the nature of the hydrogen-bonding network and showed that INS is a sensitive probe of the degree of completeness and strength of the bond network in hydrogen-bonded materials. Results suggest that the ionic size may explain cation-specific differences in crystallization pathways in alkaline aluminate salts.

7.
J Am Chem Soc ; 142(41): 17598-17606, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32957777

RESUMO

Directed synthesis promises control over architecture and function of framework materials. In practice, however, designing such syntheses requires a detailed understanding of the multistep pathways of framework formations, which remain elusive. By identifying intermediate coordination complexes, this study provides insights into the complex role of a structure-directing agent (SDA) in the synthetic realization of a promising material. Specifically, a novel molecular intermediate was observed in the formation of an indium zeolitic metal-organic framework (ZMOF) with a sodalite topology. The role of the imidazole SDA was revealed by time-resolved in situ powder X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS).

8.
Inorg Chem ; 59(20): 15295-15301, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33000622

RESUMO

We report the heterolysis of molecular hydrogen under ambient conditions by the crystalline frustrated Lewis pair (FLP) 1-{2-[bis(pentafluorophenyl)boryl]phenyl}-2,2,6,6-tetramethylpiperidine (KCAT). The gas-solid reaction provides an approach to prepare the solvent-free, polycrystalline ion pair KCATH2 through a single crystal to single crystal transformation. The crystal lattice of KCATH2 increases in size relative to the parent KCAT by approximately 2%. Microscopy was used to follow the transformation of the highly colored red/orange KCAT to the colorless KCATH2 over a period of 2 h at 300 K under a flow of H2 gas. There is no evidence of crystal decrepitation during hydrogen uptake. Inelastic neutron scattering employed over a temperature range from 4-200 K did not provide evidence for the formation of polarized H2 in a precursor complex within the crystal at low temperatures and high pressures. However, at 300 K, the INS spectrum of KCAT transformed to the INS spectrum of KCATH2. Calculations suggest that the driving force is more favorable in the solid state compared to the solution or gas phase, but the addition of H2 into the KCAT crystal is unfavorable. Ab Initio methods were used to calculate the INS spectra of KCAT, KCATH2, and a possible precursor complex of H2 in the pocket between the B and N of crystalline KCAT. Ex-situ NMR showed that the transformation from KCAT to KCATH2 is quantitative and our results suggest that the hydrogen heterolysis process occurs via H2 diffusion into the FLP crystal with a rate-limiting movement of H2 from inactive positions to reactive sites.

9.
J Neuroeng Rehabil ; 17(1): 139, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087137

RESUMO

Advances in medical diagnosis and treatment have facilitated the emergence of precision medicine. In contrast, locomotor rehabilitation for individuals with acquired neuromotor injuries remains limited by the dearth of (i) diagnostic approaches that can identify the specific neuromuscular, biomechanical, and clinical deficits underlying impaired locomotion and (ii) evidence-based, targeted treatments. In particular, impaired propulsion by the paretic limb is a major contributor to walking-related disability after stroke; however, few interventions have been able to target deficits in propulsion effectively and in a manner that reduces walking disability. Indeed, the weakness and impaired control that is characteristic of post-stroke hemiparesis leads to heterogeneous deficits that impair paretic propulsion and contribute to a slow, metabolically-expensive, and unstable gait. Current rehabilitation paradigms emphasize the rapid attainment of walking independence, not the restoration of normal propulsion function. Although walking independence is an important goal for stroke survivors, independence achieved via compensatory strategies may prevent the recovery of propulsion needed for the fast, economical, and stable gait that is characteristic of healthy bipedal locomotion. We posit that post-stroke rehabilitation should aim to promote independent walking, in part, through the acquisition of enhanced propulsion. In this expert review, we present the biomechanical and functional consequences of post-stroke propulsion deficits, review advances in our understanding of the nature of post-stroke propulsion impairment, and discuss emerging diagnostic and treatment approaches that have the potential to facilitate new rehabilitation paradigms targeting propulsion restoration.


Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/reabilitação , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Fenômenos Biomecânicos , Feminino , Humanos , Perna (Membro)/fisiopatologia , Locomoção/fisiologia , Masculino , Pessoa de Meia-Idade , Paresia/etiologia , Paresia/fisiopatologia , Paresia/reabilitação , Acidente Vascular Cerebral/complicações , Caminhada/fisiologia
10.
Chem Soc Rev ; 48(21): 5350-5380, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31528877

RESUMO

Boron compounds have a rich history in energy storage applications, ranging from high energy fuels for advanced aircraft to hydrogen storage materials for fuel cell applications. In this review we cover some of the aspects of energy storage materials comprised of electron-poor boron materials combined with electron-rich nitrogen elements with the goal of moderate temperature release of hydrogen. The parent compounds of ammonium borohydride, ammonia borane, and diammoniate of diborane provide approaches for storing high gravimetric and volumetric densities of hydrogen. Here we provide a review with a historical perspective and current developments in the area of solid state B and N containing compounds. This review highlights developments in synthesis of ammonia borane and its derivatives over the last 80 years. Thermodynamics and kinetics of hydrogen release in the solid state are discussed. By changing either substituents on the boron and nitrogen atoms or the physical environment by embedding in mesoporous scaffolds, the thermodynamics can be modified to reduce the exothermicity of hydrogen release and minimize formation of volatile impurities. Several mechanistic studies are reviewed identifying the key distinctions between homopolar and heteropolar H2 release. Strategies for economical and efficient regeneration of the hydrogen storage materials via chemical transformation are critically reviewed. The limited efficiency of these chemical regeneration has limited some of the potential applications.

11.
Angew Chem Int Ed Engl ; 59(48): 21719-21727, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32818311

RESUMO

High-temperature treatment of γ-Al2 O3 can lead to a series of polymorphic transformations, including the formation of δ-Al2 O3 and θ-Al2 O3 . Quantification of the microstructure in the range where δ- and θ-Al2 O3 are formed represents a formidable challenge, as both phases accommodate a high degree of structural disorder. In this work, we explore the use of an XRD recursive-stacking formalism for the quantification of high-temperature transition aluminas. We formulate the recursive-stacking methodology for modelling of disorder in δ-Al2 O3 and twinning in θ-Al2 O3 and show that explicitly accounting for the disorder is necessary to reliably model the XRD patterns of high-temperature transition alumina. We also use the recursive stacking approach to study phase transformation during high-temperature (1050 °C) treatment. We show that the two different intergrowth modes of δ-Al2 O3 have different transformation characteristics and that a significant portion of δ-Al2 O3 is stabilized with θ-Al2 O3 even after prolonged high-temperature exposures.

12.
Inorg Chem ; 58(18): 12385-12394, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31486636

RESUMO

Gibbsite (α-Al(OH)3) transformation into layered double hydroxides, such as lithium aluminum hydroxide dihydrate (LiAl-LDH), is generally thought to occur by solid-state intercalation of Li+, in part because of the intrinsic structural similarities in the quasi-2D octahedral Al3+ frameworks of these two materials. However, in caustic environments where gibbsite solubility is high relative to LiAl-LDH, a dissolution-reprecipitation pathway is conceptually enabled, proceeding via precipitation of tetrahedral (Td) aluminate anions (Al(OH)4-) at concentrations held below 150 mM by rapid LiAl-LDH nucleation and growth. In this case, the relative importance of solid-state versus solution pathways is unknown because it requires in situ techniques that can distinguish Al3+ in solution and in the solid phase (gibbsite and LiAl-LDH), simultaneously. Here, we examine this transformation in partially deuterated LiOH solutions, using multinuclear, magic angle spinning, and high field nuclear magnetic resonance spectroscopy (27Al and 6Li MAS NMR), with supporting X-ray diffraction and scanning electron microscopy. In situ 27Al MAS NMR captured the emergence and decline of metastable aluminate ions, consistent with dissolution of gibbsite and formation of LiAl-LDH by precipitation. High field, ex situ 6Li NMR of the the progressively reacted solids resolved an Oh Li+ resonance that narrowed during the transformation. This is likely due to increasing local order in LiAl-LDH, correlating well with observations in high field, ex situ 27Al MAS NMR spectra, where a comparatively narrow LiAl-LDH Oh 27Al resonance emerges upfield of gibbsite resonances. No intermediate pentahedral Al3+ is resolvable. Quantification of aluminate ion concentrations suggests a prominent role for the solution pathway in this system, a finding that could help improve strategies for manipulating Al3+ concentrations in complex caustic waste streams, such as those being proposed to treat the high-level nuclear waste stored at the U.S. Department of Energy's Hanford Nuclear Reservation in Washington State, USA.

13.
Phys Chem Chem Phys ; 22(1): 368-378, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31819933

RESUMO

Metal borohydrides are considered promising materials for hydrogen storage applications due to their high volumetric and gravimetric hydrogen density. Recently, different Lewis bases have been complexed with Mg(BH4)2 in efforts to improve hydrogenation/dehydrogenation properties. Notably, Mg(BH4)2·xTHF adducts involving tetrahydrofuran (THF; C4H8O) have proven to be especially interesting. This work focuses on exploring the physicochemical properties of the THF-rich Mg(BH4)2·3THF adduct using neutron-scattering methods and molecular DFT calculations. Structural analysis, based on neutron diffraction measurements of Mg(11BH4)2·3TDF (D - deuterium), has confirmed a lowering of the symmetry upon cooling, from monoclinic C2/c to P1[combining macron] via a triclinic distortion. Vibrational properties are strongly influenced by the THF environment, showing a splitting in spectral features as a result of changes in the bond lengths, force constants, and lowering of the overall symmetry. Interestingly, the orientational mobilities of the BH4- anions obtained from quasielastic neutron scattering (QENS) are not particularly sensitive to the presence of THF and compare well with the mobilities of BH4- anions in unsolvated Mg(BH4)2. The QENS data point to uniaxial 180° jump reorientations of the BH4- anions around a preferred C2 anion symmetry axis. The THF rings are also found to be orientationally mobile, undergoing 180° reorientational jumps around their C2 molecular symmetry axis with jump frequencies about an order of magnitude lower than those for the BH4- anions. In contrast, no dynamical behavior of the THF rings is observed with QENS for a more THF-deficient 2Mg(BH4)2·THF adduct. This lack of comparable THF mobility may reflect a stronger Mg2+-THF bonding interaction for lower THF/Mg(BH4)2 stoichiometric ratios, which is consistent with DFT calculations showing a decrease in the binding energy with each additional THF ring in the adduct. Based on the combined experimental and computational results, we propose that combining THF and Mg(BH4)2 is beneficial to (i) preventing weakly bound THF from coming free from the Mg2+ cation and reducing the concentration of any unwanted impurity in the hydrogen and (ii) disrupting the stability of the crystalline phase, leading to a lower melting point and enhanced kinetics for any potential hydrogen storage applications.

14.
J Nat Prod ; 82(3): 440-448, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30295480

RESUMO

A series of Wrightia hanleyi extracts was screened for activity against Mycobacterium tuberculosis H37Rv. One active fraction contained a compound that initially appeared to be either the isoflavonoid wrightiadione or the alkaloid tryptanthrin, both of which have been previously reported in other Wrightia species. Characterization by NMR and MS, as well as evaluation of the literature describing these compounds, led to the conclusion that wrightiadione (1) was misidentified in the first report of its isolation from W. tomentosa in 1992 and again in 2015 when reported in W. pubescens and W. religiosa. Instead, the molecule described in these reports and in the present work is almost certainly the isobaric (same nominal mass) and isosteric (same number of atoms, valency, and shape) tryptanthrin (2), a well-known quinazolinone alkaloid found in a variety of plants including Wrightia species. Tryptanthrin (2) is also accessible synthetically via several routes and has been thoroughly characterized. Wrightiadione (1) has been synthesized and characterized and may have useful biological activity; however, this compound can no longer be said to be known to exist in Nature. To our knowledge, this misidentification of wrightiadione (1) has heretofore been unrecognized.


Assuntos
Antituberculosos/isolamento & purificação , Apocynaceae/química , Quinazolinas/isolamento & purificação , Antituberculosos/química , Antituberculosos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Isoflavonas , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Quinazolinas/química , Quinazolinas/farmacologia
15.
Small ; 14(52): e1803108, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30397995

RESUMO

Nonuniform and highly localized Li dendrites are known to cause deleterious and, in many cases, catastrophic effects on the performance of rechargeable Li batteries. However, the mechanisms of cathode failures upon contact with Li metal are far from clear. In this study, using in situ transmission electron microscopy, the interaction of Li metal with well-defined, epitaxial thin films of LiCoO2 , the most widely used cathode material, is directly visualized at an atomic scale. It is shown that a spontaneous and prompt chemical reaction is triggered once Li contact is made, leading to expansion and pulverization of LiCoO2 and ending with the final reaction products of Li2 O and Co metal. A topotactic phase transition is identified close to the reaction front, resulting in the formation of CoO as a metastable intermediate. Dynamic structural and chemical imaging, in combination with ab initio simulations, reveal that a high density of grain and antiphase boundaries is formed at the reaction front, which are critical for enabling the short-range topotactic reactions and long-range Li propagation. The fundamental insights are of general importance in mitigating Li dendrites related issues and guiding the design principle for more robust energy materials.

16.
Inorg Chem ; 57(19): 11864-11873, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30036042

RESUMO

Aluminum hydroxide (Al(OH)3, gibbsite) dissolution and precipitation processes in alkaline environments play a commanding role in aluminum refining and nuclear waste processing, yet mechanistic aspects underlying sluggish kinetics during crystallization have remained obscured due to a lack of in situ probes capable of isolating incipient ion pairs. At a molecular level Al is cycling between tetrahedral ( T d) coordination in solution to octahedral ( O h) in the solid. We explored dissolution of Al(OH)3 that was used to produce variably saturated aluminate (Al(OH)4-)-containing solutions under alkaline conditions (pH >13) with in situ 27Al magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy, and interrogated the results with ab initio molecular dynamics (AIMD) simulations complemented with chemical shift calculations. The collective results highlight the overall stability of the solvation structure for T d Al in the Al(OH)4- oxyanion as a function of both temperature and Al concentration. The observed chemical shift did not change significantly even when the Al concentration in solution became supersaturated upon cooling and limited precipitation of the octahedral Al(OH)3 phase occurred. However, subtle changes in Al(OH)4- speciation correlated with the dissolution/precipitation reaction were found. AIMD-informed chemical shift calculations indicate that measurable perturbations should begin when the Al(OH)4-···Na+ distance is less than 6 Å, increasing dramatically at shorter distances, coinciding with appreciable changes to the electrostatic interaction and reorganization of the Al(OH)4- solvation shell. The integrated findings thus suggest that, under conditions incipient to and concurrent with gibbsite crystallization, nominally expected contact ion pairs are insignificant and instead medium-range (4-6 Å) solvent-separated Al(OH)4-···Na+ pairs predominate. Moreover, the fact that these medium-range interactions bear directly on resulting gibbsite characteristics was demonstrated by detailed microscopic and X-ray diffraction analysis and by progressive changes in the fwhm of the O h resonance, as measured by in situ NMR. Sluggish gibbsite crystallization may arise from the activation energy associated with disrupting this robust medium-range ion pair interaction.

17.
Environ Sci Technol ; 52(12): 7138-7148, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29874053

RESUMO

We explored the influence of a model organic ligand on mineral carbonation in nanoscale interfacial water films by conducting five time-resolved in situ X-ray diffraction (XRD) experiments at 50 °C. Forsterite was exposed to water-saturated supercritical carbon dioxide (90 bar) that had been equilibrated with 0-0.5 m citrate (C6H5O7-3) solutions. The experimental results demonstrated that greater concentrations of citrate in the nanoscale interfacial water film promoted the precipitation of magnesite (MgCO3) relative to nesquehonite (MgCO3·3H2O). At the highest concentrations tested, magnesite nucleation and growth were inhibited, lowering the carbonation rate constant from 9.1 × 10-6 to 3.6 × 10-6 s-1. These impacts of citrate were due to partial dehydration of Mg2+(aq) and the adsorption of citrate onto nuclei and magnesite surfaces. This type of information may be used to predict and tailor subsurface mineralization rates and pathways.


Assuntos
Ácido Cítrico , Água , Dióxido de Carbono , Citratos , Cinética , Minerais
18.
Environ Sci Technol ; 52(20): 11752-11759, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30221934

RESUMO

Here, Cr(VI) effects on Tc-immobilization by Fe(OH)2(s) are investigated while assessing Fe(OH)2(s) as a potential treatment method for Hanford low-activity waste destined for vitrification. Batch studies using simulated low-activity waste indicate that Tc(VII) and Cr(VI) removal is contingent on reduction to Tc(IV) and Cr(III). Furthermore, complete removal of both Cr and Tc depends on the amount of Fe(OH)2(s) present, where complete Cr and Tc removal requires more Fe(OH)2(s) (∼200 g/L of simulant), than removing Cr alone (∼50 g/L of simulant). XRD analysis suggests that Fe(OH)2(s) reaction and transformation in the simulant produces mostly goethite (α-FeOOH), where Fe(OH)2(s) transformation to goethite rather than magnetite is likely due to the simulant chemistry, which includes high levels of nitrite and other constituents. Once reduced, a fraction of Cr(III) and Tc(IV) substitute for octahedral Fe(III) within the goethite crystal lattice as supported by XPS, XANES, and/or EXAFS results. The remaining Cr(III) forms oxide and/or hydroxide phases, whereas Tc(IV) not fully incorporated into goethite persists as either adsorbed or partially incorporated Tc(IV)-oxide species. As such, to fully incorporate Tc(IV) into the goethite crystal structure, additional Fe(OH)2(s) (>200 g/L of simulant) may be required.


Assuntos
Cromo , Compostos Férricos , Animais , Hidróxidos , Oxirredução , Suínos
19.
Nano Lett ; 17(3): 1417-1424, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28186765

RESUMO

Instability of carbon-based oxygen electrodes and incomplete decomposition of Li2CO3 during charge process are critical barriers for rechargeable Li-O2 batteries. Here we report the complete decomposition of Li2CO3 in Li-O2 batteries using the ultrafine iridium-decorated boron carbide (Ir/B4C) nanocomposite as a noncarbon based oxygen electrode. The systematic investigation on charging the Li2CO3 preloaded Ir/B4C electrode in an ether-based electrolyte demonstrates that the Ir/B4C electrode can decompose Li2CO3 with an efficiency close to 100% at a voltage below 4.37 V. In contrast, the bare B4C without Ir electrocatalyst can only decompose 4.7% of the preloaded Li2CO3. Theoretical analysis indicates that the high efficiency decomposition of Li2CO3 can be attributed to the synergistic effects of Ir and B4C. Ir has a high affinity for oxygen species, which could lower the energy barrier for electrochemical oxidation of Li2CO3. B4C exhibits much higher chemical and electrochemical stability than carbon-based electrodes and high catalytic activity for Li-O2 reactions. A Li-O2 battery using Ir/B4C as the oxygen electrode material shows highly enhanced cycling stability than those using the bare B4C oxygen electrode. Further development of these stable oxygen-electrodes could accelerate practical applications of Li-O2 batteries.

20.
Nano Lett ; 17(10): 6248-6257, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28876941

RESUMO

The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, the integration of gate materials that enable nonvolatile or hysteretic functionality in field-effect transistors could lead to device technologies that consume less power or allow for novel modalities in computing. Here we present electrical characterization of ultrathin single crystalline SrZrxTi1-xO3 (x = 0.7) films epitaxially grown on a high mobility semiconductor, Ge. Epitaxial films of SrZrxTi1-xO3 exhibit relaxor behavior, characterized by a hysteretic polarization that can modulate the surface potential of Ge. We find that gate layers as thin as 5 nm corresponding to an equivalent-oxide thickness of just 1.0 nm exhibit a ∼2 V hysteretic window in the capacitance-voltage characteristics. The development of hysteretic metal-oxide-semiconductor capacitors with nanoscale gate thicknesses opens new vistas for nanoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA