Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 121(12): 6915-6990, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33835796

RESUMO

At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.


Assuntos
Química Click/métodos , Fotoquímica/métodos , Alcinos/química , Azidas/química , Reação de Cicloadição
2.
Angew Chem Int Ed Engl ; 61(11): e202116522, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35023253

RESUMO

Diarylethene-functionalized liquid-crystalline elastomers (DAE-LCEs) containing thiol-anhydride bonds were prepared and shown to undergo reversible, reprogrammable photoinduced actuation. Upon exposure to UV light, a monodomain DAE-LCE generated 5.5 % strain. This photogenerated strain was demonstrated to be optically reversible over five cycles of alternating UV/Visible light exposure with minimal photochrome fatigue. The incorporation of thiol-anhydride dynamic bonds allowed for retention of actuated states. Further, re-programming of the nematic director was achieved by heating above the temperature for bond exchange to occur (70 °C) yet below the nematic-to-isotropic transition temperature (100 °C) such that order was maintained between mesogens. The observed thermal stability of each of the diarylethene isomers of over 72 h allowed for decoupling of photo-induced processes and polymer network effects, showing that both polymer relaxation and back-isomerization of the diarylethene contributed to LCE relaxation over a period of 12 hours after actuation unless bond exchange occurred.

3.
Angew Chem Int Ed Engl ; 61(1): e202110741, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34697873

RESUMO

An athermal approach to mRNA enrichment from total RNA using a self-immolative thioester linked nucleic acids (TENA) is described. Oligo(thymine) (oT) TENA has a six-atom spacing between bases which allowed TENA to selectively base-pair with polyadenine RNA. As a result of the neutral backbone of TENA and the hydrophobicity of the octanethiol end group, oT TENA is water insoluble and efficiently pulled down 93±2 % of EGFP mRNA at a concentration of 10 ng µL-1 . Self-immolative degradation of TENA upon ambient temperature exposure to nucleophilic buffer components (Tris, DTT) allowed recovery of 55±27 ng of mRNA from 3.1 µg of total RNA, which was not statistically different from the amount recovered using Dynabeads® mRNA DIRECT Kit (89±24 ng). Gene expression as measured by RT-qPCR was comparable for both enrichment methods, suggesting that the mild conditions required for enrichment of mRNA using oT TENA are compatible with RT-qPCR and other downstream molecular biology applications.


Assuntos
Ésteres/química , RNA/química , Compostos de Sulfidrila/química , RNA/genética
4.
Biomacromolecules ; 22(3): 1127-1136, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33621070

RESUMO

Microparticle-mediated nucleic acid delivery is a popular strategy to achieve therapeutic outcomes via antisense gene therapy. However, current methods used to fabricate polymeric microparticles suffer from suboptimal properties such as particle polydispersity and low encapsulation efficiency. Here, a new particulate delivery system based on step-growth thiol-Michael dispersion polymerization is reported in which a low polydispersity microparticle is functionalized with a synthetic nucleic acid mimic, namely, click nucleic acids (CNA). CNA oligomers, exhibiting an average length of approximately four nucleic acid repeat units per chain for both adenine and thymine bases, were successfully conjugated to excess thiols present in the microparticles. Effective DNA loading was obtained by simple mixing, and up to 6 ± 2 pmol of complementary DNA/mg of particle was achieved, depending on the length of DNA used. In addition, DNA loading was orders of magnitude less for noncomplementary sequences and sequences containing an alternating base mismatch. The DNA release properties were evaluated, and it was found that release could be triggered by sudden changes in temperature but was unaffected over a range of pH. Finally, phagocytosis of loaded microparticles was observed by confocal microscopy and corroborated by an increase in cellular metabolic activity up to 90%. Overall, this work suggests that CNA functionalized microparticles could be a promising platform for controlled DNA delivery.


Assuntos
Ácidos Nucleicos , DNA , Tamanho da Partícula , Polimerização , Polímeros , Compostos de Sulfidrila
5.
Soft Matter ; 17(3): 467-474, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346289

RESUMO

Reversibly programmable liquid crystal elastomer microparticles (LCEMPs), formed as a covalent adaptable network (CAN), with an average diameter of 7 µm ± 2 µm, were synthesized via a thiol-Michael dispersion polymerization. The particles were programmed to a prolate shape via a photoinitiated addition-fragmentation chain-transfer (AFT) exchange reaction by activating the AFT after undergoing compression. Due to the thermotropic nature of the AFT-LCEMPs, shape switching was driven by heating the particles above their nematic-isotropic phase transition temperature (TNI). The programmed particles subsequently displayed cyclable two-way shape switching from prolate to spherical when at low or high temperatures, respectively. Furthermore, the shape programming is reversible, and a second programming step was done to erase the prolate shape by initiating AFT at high temperature while the particles were in their spherical shape. Upon cooling, the particles remained spherical until additional programming steps were taken. Particles were also programmed to maintain a permanent oblate shape. Additionally, the particle surface was programmed with a diffraction grating, demonstrating programmable complex surface topography via AFT activation.

6.
Macromol Rapid Commun ; 42(7): e2000644, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368753

RESUMO

Surface modifications are typically permanent in shape and chemistry. Herein, vinylogous urethane (VU) chemistry is presented as an easily accessible and versatile platform for rapid, facile, and reworkable surface modification. It is demonstrated that both physical and chemical post-modification of permanent, yet dynamic elastic polymer networks are achieved. Surface patterns with high regularity are created, both via a straightforward replication process using a polydimethylsiloxane stamp (resolution ca. 10-100 µm) as well as using thermally activated nano-imprint lithography (NIL) to form hole, pillar, or line patterns (ca. 300 nm) in elastic VU-based vitrimers. The tunable, rapid exchange allows patterning at 130 °C in less than 15 min, resulting in an increased water contact angle and surface-structure induced light reflection. Moreover, it is also demonstrated that the use of a single dynamic covalent chemistry makes it possible to strongly adhere to fluorinated and non-fluorinated materials based on incompatible matrices, causing cohesive failure in a peel test. In a topography scan, the visibly transparent interface is shown to possess a continuous phase without a gap, while maintaining distinctively separated (non)-fluorinated domains. Finally, this approach allowed for a straightforward coating of a non-fluorinated material with a fluorinated monomer to minimize the overall fluorinated content.


Assuntos
Polímeros , Impressão , Substâncias Macromoleculares , Propriedades de Superfície
7.
Biomacromolecules ; 21(10): 4205-4211, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32915548

RESUMO

Click nucleic acids (CNAs) are a new, low-cost class of xeno nucleic acid (XNA) oligonucleotides synthesized by an efficient and scalable thiol-ene polymerization. In this work, a thorough characterization of oligo(thymine) CNA-oligo(adenine) DNA ((dA)20) hybridization was performed to guide the future implementation of CNAs in applications that rely on sequence-specific interactions. Microscale thermophoresis provided a convenient platform to rapidly and systematically investigate the effects of several factors (i.e., sequence, length, and salt concentration) on the CNA-DNA dissociation constant (Kapp). Because CNAs have limited water solubility, all studies were performed in aqueous-DMSO mixtures. CNA-DNA hybrids between oligo(thymine) CNA (average length of 16 bases) and (dA)20 DNA have good stability despite the high organic content, a favorable attribute for many emerging applications of XNAs. In particular, the Kapp of CNA-DNA hybrids in 65 vol % DMSO with 10 mM sodium chloride (NaCl) was 0.74 ± 0.1 µM, whereas the Kapp for (dT)20-(dA)20 DNA-DNA was found to be 45 ± 2 µM in a buffer without DMSO but at the same NaCl concentration. CNA hybridized with DNA following Watson-Crick base pairing with excellent sequence specificity, discriminating even a single-base-pair mismatch, with Kapp values of 0.74 ± 0.1 and 3.7 ± 0.6 µM for complementary and single-base-pair mismatch sequences, respectively. As with dsDNA, increasing CNA length led to more stable hybrids as a result of increased base pairing, where Kapp decreased from 5.6 ± 0.8 to 0.27 ± 0.1 µM as the CNA average length increased from 7 to 21 bases. However, unlike DNA-DNA duplexes, which are largely unstable at low salt concentrations, the CNA-DNA stability does not depend on salt concentration, with Kapp remaining consistent between 1.0 and1.9 µM over a NaCl concentration range of 1.25-30 mM.


Assuntos
DNA , Ácidos Nucleicos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Concentração Osmolar , Polimerização
8.
Macromol Rapid Commun ; 41(16): e2000327, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32729144

RESUMO

Through thiol-ene photopolymerization of presynthesized oligomers, advanced clickable nucleic acids (CNA-2G) are synthesized with sequence-controlled repeating units. As examples, poly(thymine-adenine) (polyTA) CNA-2G and poly(thymine-thymine-cytosine) CNA-2G are synthesized by polymerizing thiol-ene heterofunctional dimers with pendant thymine-adenine nucleobases and trimer with pendant thymine-thymine-cytosine nucleobases. Based on size exclusion chromatography (SEC) analysis, polyTA and polyTTC have number average molecular weights of 2000 and 1800, respectively, which contain 7-8 pendant nucleobases. Based on the different behavior of the CNA-2G monomers and CNA-2G oligomers with two or more pendant nucleobases in photopolymerization, an unusual thiol-ene chain-growth propagation mechanism is observed for the former and a common thiol-ene step-growth propagation mechanism for the latter. The uncommon thiol-ene chain-growth propagation is hypothesized to rely on a six-membered ring mediated intramolecular hydrogen atom transfer process.


Assuntos
Oligonucleotídeos , Compostos de Sulfidrila , Peso Molecular , Polímeros
9.
Angew Chem Int Ed Engl ; 59(24): 9345-9349, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32133746

RESUMO

The reaction of thiols and anhydrides to form ring opened thioester/acids is shown to be highly reversible and it is accordingly employed in the fabrication of covalent adaptable networks (CANs) that possess tunable dynamic covalent chemistry. Maleic, succinic, and phthalic anhydride derivatives were used as bifunctional reactants in systems with varied stoichiometries, catalyst, and loadings. Dynamic characteristics such as temperature-dependent stress relaxation, direct reprocessing and recycling abilities of a range of thiol-anhydride elastomers, glasses, composites and photopolymers are discussed. Depending on the catalyst strength, 100 % of externally imposed stresses were relaxed in the order of minutes to 2 hours at mild temperatures (80-120 °C). Pristine properties of the original materials were recovered following up to five cycles of a hot-press reprocessing technique (1 h/100 °C).

10.
Biomacromolecules ; 20(4): 1683-1690, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30884222

RESUMO

The simultaneous delivery of multiple therapeutics to a single site has shown promise for cancer targeting and treatment. However, because of the inherent differences in charge and size between drugs and biomolecules, new approaches are required for colocalization of unlike components in one delivery vehicle. In this work, we demonstrate that triblock copolymers containing click nucleic acids (CNAs) can be used to simultaneously load a prodrug enzyme (cytosine deaminase, CodA) and a chemotherapy drug (doxorubicin, DOX) in a single polymer nanoparticle. CNAs are synthetic analogs of DNA comprised of a thiolene backbone and nucleotide bases that can hybridize to complementary strands of DNA. In this study, CodA was appended with complementary DNA sequences and fluorescent dyes to allow its encapsulation in PEG-CNA-PLGA nanoparticles. The DNA-modified CodA was found to retain its enzyme activity for converting prodrug 5-fluorocytosine (5-FC) to active 5-fluorouracil (5-FU) using a modified fluorescent assay. The DNA-conjugated CodA was then loaded into the PEG-CNA-PLGA nanoparticles and tested for cell cytotoxicity in the presence of the 5-FC prodrug. To study the effect of coloading DOX and CodA within a single nanoparticle, cell toxicity assays were run to compare dually loaded nanoparticles with nanoparticles loaded only with either DOX or CodA. We show that the highest level of cell death occurred when both DOX and CodA were simultaneously entrapped and delivered to cells in the presence of 5-FC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Citosina Desaminase , DNA , Portadores de Fármacos , Enzimas Imobilizadas , Proteínas de Escherichia coli , Nanopartículas , Neoplasias , Poliésteres , Polietilenoglicóis , Pró-Fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Citosina Desaminase/química , Citosina Desaminase/farmacologia , DNA/química , DNA/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Flucitosina/química , Flucitosina/farmacocinética , Flucitosina/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Poliésteres/síntese química , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia
11.
Soft Matter ; 15(18): 3740-3750, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31042253

RESUMO

A spiropyran-containing triazole-phosphatidylcholine (SPTPC) was synthesized through a copper-catalyzed azide alkyne cyclo-addition (CuAAC) reaction. In water, SPTPCs self-assembled and a spontaneous spiropyran-to-merocyanine (SP-to-MC) isomerization occurred, resulting in coexistence of liposomes and fibers, and switching from the spiropyran (SP) to the merocyanine (MC) isomeric structure induced a reversible transition between these molecular assemblies. Study of the self-assembly of SPTPCs and photo-induced liposome-fiber assembly-transition revealed that the presence of MC enabled additional inter-membrane interaction during self-assembly and that the MC-stacking effect was the driving force for the assembly-transition. Exposure to UV light induced switching from SP to MC, where the planar structure of MC and the confinement of MC led to enhanced MC-stacking. The effect of MC-stacking was both advantageous and disadvantageous: MC-stacking perturbed the hydrophobic phase in the bilayer membrane and facilitated the liposome-to-fiber transition, otherwise the MC-stacking retarded switching of MC to SP, and caused an incomplete recovery of MC to SP during fiber-to-liposome recovery, thus a fatigue of SP was induced by MC-stacking during the liposome-to-fiber transition cycle. To decrease the intermolecular interactions and suppress MC-stacking, photo-inert triazole-phosphatidylcholine (TPC) was incorporated to prepare two-component TPC/SPTPC-liposomes, which exhibited better recovery kinetics. The photo-adaptive behavior of TPC/SPTPC-liposomes confirmed the disturbance of bilayer membranes by inter-membrane MC-stacking and the formation of MCTPC-enriched phases in the bilayer membrane.


Assuntos
Benzopiranos/química , Indóis/química , Lipossomos/química , Nitrocompostos/química , Fosfatidilcolinas/química , Processos Fotoquímicos , Triazóis/química , Alcinos/química , Azidas/química , Catálise , Cobre/química , Bicamadas Lipídicas/química , Transição de Fase , Raios Ultravioleta
12.
J Am Chem Soc ; 140(37): 11585-11588, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30183266

RESUMO

Muscle cells sense the mechanical properties of their microenvironment, and these properties can change in response to injury or disease. Hydrogels with dynamic material properties can be used to study the effect of such varying mechanical signals. Here, we report the ability of azadibenzocyclooctyne to undergo a cytocompatible, photoinitiated crosslinking reaction. This reaction is exploited as a strategy for on-demand stiffening of three-dimensional cell scaffolds formed through an initial strain-promoted azide-alkyne cycloaddition. Myoblasts encapsulated in these networks respond to increased matrix stiffness through decreased cell spreading and nuclear localization of Yes-associated protein 1 (YAP). However, when the photocrosslinking reaction is delayed to allow cell spreading, elongated myoblasts display increased YAP nuclear localization.


Assuntos
Compostos Aza/química , Reagentes de Ligações Cruzadas/química , Ciclo-Octanos/química , Hidrogéis/química , Mecanotransdução Celular , Mioblastos/citologia , Sobrevivência Celular , Humanos , Estrutura Molecular , Processos Fotoquímicos
13.
J Am Chem Soc ; 140(42): 13594-13598, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30351134

RESUMO

The synthesis of thiolactone monomers that mimic natural nucleosides and engage in robust ring opening polymerizations (ROP) is herein described. As each repeat unit contains a thioester functional group, dynamic rearrangement of the polymer is feasible via thiol-thioester exchange, demonstrated here by depolymerization of the polymers and coalescing of two polymers of different molecular weight or chemical composition. This approach constitutes the first step toward a platform that enables for the routine synthesis of sequence controlled polymers via dynamic template directed synthesis.


Assuntos
DNA/química , Lactonas/química , Polimerização , Polímeros/química , Compostos de Sulfidrila/química , DNA/síntese química , Lactonas/síntese química , Modelos Moleculares , Polímeros/síntese química , Compostos de Sulfidrila/síntese química
14.
Adv Funct Mater ; 28(22)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31105506

RESUMO

Photopolymerization is a ubiquitous, indispensable technique widely applied in applications from coatings, inks, and adhesives to thermosetting restorative materials for medical implants, and the fabrication of complex macro-scale, microscale, and nanoscale 3D architectures via additive manufacturing. However, due to the brittleness inherent in the dominant acrylate-based photopolymerized networks, a significant need exists for higher performance resin/oligomer formulations to create tough, defect-free, mechanically ductile, thermally and chemically resistant, high modulus network polymers with rapid photocuring kinetics. This study presents densely cross-linked triazole-based glassy photopolymers capable of achieving preeminent toughness of ≈70 MJ m-3 and 200% strain at ambient temperature, comparable to conventional tough thermoplastics. Formed either via photoinitiated copper(I)-catalyzed cycloaddition of monomers containing azide and alkyne groups (CuAAC) or via photoinitiated thiol-ene reactions from monomers containing triazole rings, these triazole-containing thermosets completely recover their original dimensions and mechanical behavior after repeated deformations of 50% strain in the glassy state over multiple thermal recovery-strain cycles.

15.
Biomacromolecules ; 19(7): 2535-2541, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29698604

RESUMO

The recently developed synthetic oligonucleotides referred to as "click" nucleic acids (CNAs) are promising due to their relatively simple synthesis based on thiol-X reactions with numerous potential applications in biotechnology, biodetection, gene silencing, and drug delivery. Here, the cytocompatibility and cellular uptake of rhodamine tagged, PEGylated CNA copolymers (PEG-CNA-RHO) were evaluated. NIH 3T3 fibroblast cells treated for 1 h with 1, 10, or 100 µg/mL PEG-CNA-RHO maintained an average cell viability of 86%, which was not significantly different from the untreated control. Cellular uptake of PEG-CNA-RHO was detected within 30 s, and the amount internalized increased over the course of 1 h. Moreover, these copolymers were internalized within cells to a higher degree than controls consisting of either rhodamine tagged PEG or the rhodamine alone. Uptake was not affected by temperature (i.e., 4 or 37 °C), suggesting a passive uptake mechanism. Subcellular colocalization analysis failed to indicate significant correlations between the internalized PEG-CNA-RHO and the organelles examined (mitochondria, endoplasmic reticulum, endosomes and lysosomes). These results indicate that CNA copolymers are cytocompatible and are readily internalized by cells, supporting the idea that CNAs are a promising alternative to DNA in antisense therapy applications.


Assuntos
Oligonucleotídeos/química , Polietilenoglicóis/química , Células 3T3 , Animais , Endocitose , Camundongos , Oligonucleotídeos/efeitos adversos , Organelas/metabolismo
16.
Biomacromolecules ; 19(10): 4139-4146, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30212619

RESUMO

Due to the ability to generate oligomers of precise sequence, sequential and stepwise solid-phase synthesis has been the dominant method of producing DNA and other oligonucleotide analogues. The requirement for a solid support, however, and the physical restrictions of limited surface area thereon significantly diminish the efficiency and scalability of these syntheses, thus, negatively affecting the practical applications of synthetic polynucleotides and other similarly created molecules. By employing the robust photoinitiated thiol-ene click reaction, we developed a new generation of clickable nucleic acids (CNAs) with a polythioether backbone containing repeat units of six atoms, matching the spacing of the phosphodiester backbone of natural DNA. A simple, inexpensive, and scalable route was utilized to produce CNA monomers in gram-scale, which indicates the potential to dramatically lower the cost of these DNA mimics and thereby expand the scope of these materials. The efficiency of this approach was demonstrated by the completion of CNA polymerization in 30 seconds, as characterized by size-exclusive chromatography (SEC) and infrared (IR) spectroscopy. CNA/DNA hybridization was demonstrated by gel electrophoresis and used in CdS nanoparticle assembly.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Nanopartículas/química , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Química Click , Humanos , Hibridização de Ácido Nucleico , Polimerização
17.
Soft Matter ; 14(37): 7645-7652, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30175341

RESUMO

Synthetic unilamellar liposomes, functionalized to enable novel characteristics and behavior, are of great utility to fields such as drug delivery and artificial cell membranes. However, the generation of these liposomes is frequently highly labor-intensive and time consuming whereas in situ liposome formation presents a potential solution to this problem. A novel method for in situ lipid formation is developed here through the covalent addition of a thiol-functionalized lysolipid to an acrylate-functionalized tail via the thiol-Michael addition reaction with potential for inclusion of additional functionality via the tail. Dilute, stoichiometric mixtures of a thiol lysolipid and an acrylate tail reacted in an aqueous media at ambient conditions for 48 hours reached nearly 90% conversion, forming the desired thioether-containing phospholipid product. These lipids assemble into a high density of liposomes with sizes ranging from 20 nm to several microns in diameter and include various structures ranging from spheres to tubular vesicles with structure and lamellarity dependent upon the catalyst concentration used. To demonstrate lipid functionalization, an acrylate tail possessing a terminal alkyne was coupled into the lipid structure. These functionalized liposomes enable photo-induced polymerization of the terminal alkyne upon irradiation.


Assuntos
Compostos de Sulfidrila/química , Lipossomas Unilamelares/química , Fosfolipídeos/química
18.
Soft Matter ; 14(6): 951-960, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29319713

RESUMO

Adaptable liquid crystal elastomers (LCEs) have recently emerged to provide a new and robust method to program monodomain LCE samples. When a constant stress is applied with active bond exchange reactions (BERs), polymer chains and mesogens gradually align in the strain direction. Mesogen alignment is maintained after removing the BER stimulus (e.g. by lowering the temperature) and the programmed LCE samples exhibit free-standing two-way shape switching behavior. Here, a new adaptable main-chain LCE system was developed with thermally induced transesterification BERs. The network combines the conventional properties of LCEs, such as an isotropic phase transition and soft elasticity, with the dynamic features of adaptable network polymers, which are malleable to stress relaxation due to the BERs. Polarized Fourier transform infrared measurements confirmed the alignment of polymer chains and mesogens after strain-induced programming. The influence of the creep stress, temperature, and time on the strain amplitude of two-way shape switching was examined. The LCE network demonstrates an innovative feature of reprogrammability, where the reversible shape-switching memory of programmed LCEs is readily deleted by free-standing heating as random BERs disrupt the mesogen alignment, so LCEs are reprogrammed after returning to the polydomain state. Due to the dynamic nature of the LCE network, it also exhibits a surface welding effect and can be fully dissolved in the organic solvent, which might be utilized for green and sustainable recycling of LCEs.

19.
Soft Matter ; 14(34): 7045-7051, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30112539

RESUMO

An artificial nucleolipid containing thymine, a triazole-ring, and phosphatidylcholine (TTPC) moieties was prepared by copper catalyzed azide alkyne cycloaddition (CuAAC) under aqueous conditions. The resulting TTPC molecules assembled in situ into a fibrous aggregation. The study of the TTPC fiber assembly using XRD and NMR spectroscopy revealed that the formation of fibers was driven by the unique combination of the lipid and nucleobase moieties in the structure of TTPC. At a critical TTPC concentration, entanglement of the fibers resulted in the formation of a supramolecular hydrogel. Investigation of the lyotropic mesophases in the TTPC supramolecular hydrogel showed the presence of multiple phases including two liquid crystal phases (i.e., nematic and lamellar), which have a certain degree of structural order and are promising templates for constructing functional biomaterials.


Assuntos
Hidrogéis/química , Cristais Líquidos/química , Fosfatidilcolinas/química , Timina/química , Alcinos/química , Azidas/química , Reação de Cicloadição , Ouro/química , Nanofibras/química , Nanotubos/química , Termodinâmica , Triazóis/química
20.
J Org Chem ; 83(5): 2912-2919, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29390175

RESUMO

The effect of amines on the kinetics and efficacy of radical-mediated thiol-ene coupling (TEC) reactions was investigated. By varying the thiol reactant and amine additive, it was shown that amines retard thiyl radical-mediated reactions when the amine is adequately basic enough to deprotonate the thiol affording the thiolate anion, e.g., when the weakly basic amine tetramethylethylenediamine was incorporated in the TEC reaction between butyl 2-mercaptoacetate and an allyl ether at 5 mol %, the final conversion was reduced from quantitative to <40%. Alternatively, no effect is observed when the less acidic thiol butyl 3-mercaptopropionate is employed. The thiolate anion was established as the retarding species through the introduction of ammonium and thiolate salt additives into TEC formulations. The formation of a two-sulfur three-electron bonded disulfide radical anion (DRA) species by the reaction of a thiyl radical with a thiolate anion was determined as the cause for the reduction in catalytic radicals and the TEC rate. Thermodynamic and kinetic trends in DRA formations were computed using density functional theory and by modeling the reaction as an associative electron transfer process. These trends correlate well with the experimental retardation trends of various thiolate anions in TEC reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA