RESUMO
The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Sistema Respiratório/virologia , Genética Reversa/métodos , Idoso , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Fibrose Cística/patologia , DNA Recombinante , Feminino , Furina/metabolismo , Humanos , Imunização Passiva , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Mucosa Nasal/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Sistema Respiratório/patologia , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Células Vero , Virulência , Replicação Viral , Soroterapia para COVID-19RESUMO
Coronaviruses are prone to transmission to new host species, as recently demonstrated by the spread to humans of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic1. Small animal models that recapitulate SARS-CoV-2 disease are needed urgently for rapid evaluation of medical countermeasures2,3. SARS-CoV-2 cannot infect wild-type laboratory mice owing to inefficient interactions between the viral spike protein and the mouse orthologue of the human receptor, angiotensin-converting enzyme 2 (ACE2)4. Here we used reverse genetics5 to remodel the interaction between SARS-CoV-2 spike protein and mouse ACE2 and designed mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA), a recombinant virus that can use mouse ACE2 for entry into cells. SARS-CoV-2 MA was able to replicate in the upper and lower airways of both young adult and aged BALB/c mice. SARS-CoV-2 MA caused more severe disease in aged mice, and exhibited more clinically relevant phenotypes than those seen in Hfh4-ACE2 transgenic mice, which express human ACE2 under the control of the Hfh4 (also known as Foxj1) promoter. We demonstrate the utility of this model using vaccine-challenge studies in immune-competent mice with native expression of mouse ACE2. Finally, we show that the clinical candidate interferon-λ1a (IFN-λ1a) potently inhibits SARS-CoV-2 replication in primary human airway epithelial cells in vitro-both prophylactic and therapeutic administration of IFN-λ1a diminished SARS-CoV-2 replication in mice. In summary, the mouse-adapted SARS-CoV-2 MA model demonstrates age-related disease pathogenesis and supports the clinical use of pegylated IFN-λ1a as a treatment for human COVID-196.
Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Interferons/farmacologia , Interferons/uso terapêutico , Interleucinas/farmacologia , Interleucinas/uso terapêutico , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Envelhecimento/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Interferon-alfa/administração & dosagem , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Interferons/administração & dosagem , Interleucinas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2RESUMO
Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.
Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Alphacoronavirus/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Infecções por Coronavirus/epidemiologia , SuínosRESUMO
BACKGROUND: Sapovirus is an important cause of acute gastroenteritis in childhood. While vaccines against sapovirus may reduce gastroenteritis burden, a major challenge to their development is a lack of information about natural immunity. METHODS: We measured sapovirus-specific IgG in serum collected, between 2017 and 2020, of mothers soon after delivery and at 6 time points in Nicaraguan children until 3 years of age (n=112 dyads) using virus-like particles representing three sapovirus genotypes (GI.1, GI.2, GV.1). RESULTS: Sixteen (14.3%) of the 112 children experienced at least one sapovirus gastroenteritis episode, of which GI.1 was the most common genotype. Seroconversion to GI.1 and GI.2 was most common between 5 and 12 months of age, while seroconversion to GV.1 peaked at 18 to 24 months of age. All children who experienced sapovirus GI.1 gastroenteritis seroconverted and developed genotype-specific IgG. The impact of sapovirus exposure on population immunity was determined using antigenic cartography: newborns share their mothers' broadly binding IgG responses, which declined at 5 months of age and then increased as infants experienced natural sapovirus infections. CONCLUSION: By tracking humoral immunity to sapovirus over the first 3 years of life, this study provides important insights for the design and timing of future pediatric sapovirus vaccines.
RESUMO
BACKGROUND: We evaluated the feasibility of completing 6 cycles of nab-paclitaxel (nab-P) and carboplatin (C) in a single arm prospective clinical trial for advanced/recurrent EC and safety and efficacy of day (D) 1, 8 nab-P in combination with D1 C q3weeks. METHODS: Patients with early-stage, high-risk, advanced primary/recurrent EC without prior platinum/taxane exposure were enrolled in an open-label, single-institution trial (NCT02744898). Patients received 6 cycles of D1 nab-P 100 mg/m2 IV with C AUC 6 IV and D8 nab-P 100 mg/m2 IV q21D. The trial tested the null hypothesis that subjects completing 6 cycles was ≤0.50 versus the alternative that the proportion is ≥0.75 in a single stage design with alpha = 0.05 and power = 80% with 23 subjects. Patients who completed 6 cycles (primary outcome), objective response rate (ORR) and clinical benefit rate (CBR) were estimated with exact 95% Clopper-Pearson confidence intervals. Progression free survival (PFS) and overall survival (OS) were estimated using Kaplan-Meier methods. RESULTS: From 08/2016-03/2018, 23 patients were enrolled. Nineteen patients (82.6%, 95% CI: 61.2%, 95.0%) completed 6 cycles, thus we could reject our null. Twelve patients (52.2%) experienced ≥1 grade 3/4 treatment-related adverse events including: anemia, 6 (26.1%); neutropenia, 5 (21.7%); diarrhea, 3 (13.0%). Fourteen patients (60.1%) reported grade 1 neuropathy. Of 9 patients with measurable target lesions, the ORR was 33.3% (95% CI: 7.5%, 70.1%) and CBR was 55.6% (95% CI: 21.2%, 86.3%). Median PFS in the advanced/recurrent patients was 23.2 (95% CI: 12.1, NR) months. CONCLUSIONS: The nab-P/C D1, 8 regimen met pre-specified feasibility criteria with acceptable toxicity and efficacy. Use of nab-P decreases need for steroid pre-medications, and this carboplatin doublet may prove advantageous for trials assessing combinations with immune checkpoint inhibitors in advanced EC.
RESUMO
Zoonotic coronaviruses represent an ongoing threat, yet the myriads of circulating animal viruses complicate the identification of higher-risk isolates that threaten human health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered, highly pathogenic virus that likely evolved from closely related HKU2 bat coronaviruses, circulating in Rhinolophus spp. bats in China and elsewhere. As coronaviruses cause severe economic losses in the pork industry and swine are key intermediate hosts of human disease outbreaks, we synthetically resurrected a recombinant virus (rSADS-CoV) as well as a derivative encoding tomato red fluorescent protein (tRFP) in place of ORF3. rSADS-CoV replicated efficiently in a variety of continuous animal and primate cell lines, including human liver and rectal carcinoma cell lines. Of concern, rSADS-CoV also replicated efficiently in several different primary human lung cell types, as well as primary human intestinal cells. rSADS-CoV did not use human coronavirus ACE-2, DPP4, or CD13 receptors for docking and entry. Contemporary human donor sera neutralized the group I human coronavirus NL63, but not rSADS-CoV, suggesting limited human group I coronavirus cross protective herd immunity. Importantly, remdesivir, a broad-spectrum nucleoside analog that is effective against other group 1 and 2 coronaviruses, efficiently blocked rSADS-CoV replication in vitro. rSADS-CoV demonstrated little, if any, replicative capacity in either immune-competent or immunodeficient mice, indicating a critical need for improved animal models. Efficient growth in primary human lung and intestinal cells implicate SADS-CoV as a potential higher-risk emerging coronavirus pathogen that could negatively impact the global economy and human health.
Assuntos
Alphacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Suscetibilidade a Doenças/virologia , Replicação Viral , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Alphacoronavirus/genética , Alphacoronavirus/crescimento & desenvolvimento , Animais , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/transmissão , Expressão Gênica , Especificidade de Hospedeiro , Humanos , Proteínas Luminescentes/genética , Camundongos , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with severe acute respiratory syndrome (SARS)-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two Middle East respiratory syndrome (MERS)-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate the infection of human gut cells but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that the addition of exogenous trypsin also rescues HKU5-CoV, a second bat group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate the emergence potential of bat CoVs and offers a means to recover previously unrecoverable zoonotic CoV strains.IMPORTANCE Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding and proteolytic cleavage of the spike are critical factors that must be considered for evaluating the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue that other tissues, including the digestive tract, could be a site for future coronavirus emergence events in humans.
Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Células CACO-2 , Quirópteros , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Humanos , Tripsina , Células Vero , Zoonoses/metabolismo , Zoonoses/virologiaRESUMO
Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever and dengue shock syndrome. It is estimated that a third of the world's population is at risk for infection, with an estimated 390 million infections annually. Dengue virus serotype 2 (DENV2) causes severe epidemics, and the leading tetravalent dengue vaccine has lower efficacy against DENV2 compared to the other 3 serotypes. In natural DENV2 infections, strongly neutralizing type-specific antibodies provide protection against subsequent DENV2 infection. While the epitopes of some human DENV2 type-specific antibodies have been mapped, it is not known if these are representative of the polyclonal antibody response. Using structure-guided immunogen design and reverse genetics, we generated a panel of recombinant viruses containing amino acid alterations and epitope transplants between different serotypes. Using this panel of recombinant viruses in binding, competition, and neutralization assays, we have finely mapped the epitopes of three human DENV2 type-specific monoclonal antibodies, finding shared and distinct epitope regions. Additionally, we used these recombinant viruses and polyclonal sera to dissect the epitope-specific responses following primary DENV2 natural infection and monovalent vaccination. Our results demonstrate that antibodies raised following DENV2 infection or vaccination circulate as separate populations that neutralize by occupying domain III and domain I quaternary epitopes. The fraction of neutralizing antibodies directed to different epitopes differs between individuals. The identification of these epitopes could potentially be harnessed to evaluate epitope-specific antibody responses as correlates of protective immunity, potentially improving vaccine design.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Vírus da Dengue/imunologia , Epitopos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Formação de Anticorpos , Especificidade de Anticorpos , Células Cultivadas , Chlorocebus aethiops , Reações Cruzadas , Dengue/imunologia , Dengue/virologia , Vacinas contra Dengue/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Estrutura Quaternária de Proteína , Sorogrupo , Vacinação , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologiaRESUMO
Zoonotic viruses circulate as swarms in animal reservoirs and can emerge into human populations, causing epidemics that adversely affect public health. Portable, safe, and effective vaccine platforms are needed in the context of these outbreak and emergence situations. In this work, we report the generation and characterization of an alphavirus replicon vaccine platform based on a non-select agent, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain 3526 (VRP 3526). Using both noroviruses and coronaviruses as model systems, we demonstrate the utility of the VRP 3526 platform in the generation of recombinant proteins, production of virus-like particles, and in vivo efficacy as a vaccine against emergent viruses. Importantly, packaging under biosafety level 2 (BSL2) conditions distinguishes VRP 3526 from previously reported alphavirus platforms and makes this approach accessible to the majority of laboratories around the world. In addition, improved outcomes in the vulnerable aged models as well as against heterologous challenge suggest improved efficacy compared to that of previously attenuated VRP approaches. Taking these results together, the VRP 3526 platform represents a safe and highly portable system that can be rapidly deployed under BSL2 conditions for generation of candidate vaccines against emerging microbial pathogens.IMPORTANCE While VEE virus replicon particles provide a robust, established platform for antigen expression and vaccination, its utility has been limited by the requirement for high-containment-level facilities for production and packaging. In this work, we utilize an attenuated vaccine strain capable of use at lower biocontainment level but retaining the capacity of the wild-type replicon particle. Importantly, the new replicon platform provides equal protection for aged mice and following heterologous challenge, which distinguishes it from other attenuated replicon platforms. Together, the new system represents a highly portable, safe system for use in the context of disease emergence.
Assuntos
Anticorpos Antivirais/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Envelhecimento/imunologia , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Chlorocebus aethiops , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/prevenção & controle , Encefalomielite Equina Venezuelana/virologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Síndrome Respiratória Aguda Grave/prevenção & controle , Síndrome Respiratória Aguda Grave/virologia , Células Vero , Zoonoses/prevenção & controle , Zoonoses/virologiaRESUMO
With an ongoing threat posed by circulating zoonotic strains, new strategies are required to prepare for the next emergent coronavirus (CoV). Previously, groups had targeted conserved coronavirus proteins as a strategy to generate live attenuated vaccine strains against current and future CoVs. With this in mind, we explored whether manipulation of CoV NSP16, a conserved 2'O methyltransferase (MTase), could provide a broad attenuation platform against future emergent strains. Using the severe acute respiratory syndrome-CoV mouse model, an NSP16 mutant vaccine was evaluated for protection from heterologous challenge, efficacy in the aging host, and potential for reversion to pathogenesis. Despite some success, concerns for virulence in the aged and potential for reversion makes targeting NSP16 alone an untenable approach. However, combining a 2'O MTase mutation with a previously described CoV fidelity mutant produced a vaccine strain capable of protection from heterologous virus challenge, efficacy in aged mice, and no evidence for reversion. Together, the results indicate that targeting the CoV 2'O MTase in parallel with other conserved attenuating mutations may provide a platform strategy for rapidly generating live attenuated coronavirus vaccines.IMPORTANCE Emergent coronaviruses remain a significant threat to global public health and rapid response vaccine platforms are needed to stem future outbreaks. However, failure of many previous CoV vaccine formulations has clearly highlighted the need to test efficacy under different conditions and especially in vulnerable populations such as the aged and immunocompromised. This study illustrates that despite success in young models, the 2'O methyltransferase mutant carries too much risk for pathogenesis and reversion in vulnerable models to be used as a stand-alone vaccine strategy. Importantly, the 2'O methyltransferase mutation can be paired with other attenuating approaches to provide robust protection from heterologous challenge and in vulnerable populations. Coupled with increased safety and reduced pathogenesis, the study highlights the potential for 2'O methyltransferase attenuation as a major component of future live attenuated coronavirus vaccines.
Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavirus/imunologia , Metiltransferases/genética , Proteínas não Estruturais Virais/genética , Vacinas Virais/genética , Envelhecimento/imunologia , Animais , Proteínas Arqueais/genética , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Metilação , Metiltransferases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Células Vero , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Replicação ViralRESUMO
OBJECTIVE: To describe and evaluate the utility of a new sonographic microcystic pattern, which is typical of borderline ovarian tumor (BOT) papillary projections, solid component(s) and/or septa, as a new ultrasound marker that is capable of distinguishing BOT from other adnexal masses, and to present/obtain histologic confirmation. METHODS: In this retrospective study, we identified women with a histologic diagnosis of BOT following surgical resection who had undergone preoperative transvaginal ultrasound (TVS) examination. All images were reviewed for presence or absence of thin-walled, fluid-filled cluster(s) of 1-3-mm cystic formations, associated with solid component(s), papillary projections and/or septa. From the same cases, histopathologic slides of each BOT were examined for presence of any of these microcystic features which had been identified on TVS. To confirm that the microcystic TVS pattern is unique to BOTs, we also selected randomly from our ultrasound and surgical database 20 cases of epithelial ovarian cancer and 20 cases of benign cystadenoma, for review by the same pathologists. To confirm the novelty of our findings, we searched PubMed for literature published in the English language between 2010 and 2018 to determine whether the association between microcystic tissue pattern and BOT has been described previously. RESULTS: Included in the final analysis were 62 patients (67 ovaries) with preoperative TVS and surgically confirmed BOT on pathologic examination. The mean patient age at surgery was 39.8 years. The mean BOT size at TVS was 60.7 mm. Of the 67 BOTs, 47 (70.1%) were serous, 15 (22.4%) were mucinous and five (7.5%) were seromucinous. We observed on TVS a microcystic pattern in the papillary projections, solid component(s) and/or septa in 60 (89.6%) of the 67 BOTs, including 46 (97.9%) of the 47 serous BOTs, 11 (73.3%) of the 15 mucinous BOTs and three (60.0%) of the five seromucinous BOTs. On microscopic evaluation, 60 (89.6%) of the 67 samples had characteristic 1-3-mm fluid-filled cysts similar to those seen on TVS. In seven cases there was a discrepancy between sonographic and histologic observation of a microcystic pattern. The 20 cystadenomas were mostly unilocular and/or multilocular and largely avascular. None of them or the 20 epithelial ovarian malignancies displayed microcystic characteristics, either on TVS or at histology. On review of 23 published articles in the English medical literature, containing 163 sonographic images of BOT, we found that, while all images contained it, there was no description of the microcystic tissue pattern. CONCLUSION: We report herein a novel sonographic marker of BOT, a 'microcystic pattern' of BOT papillary projections, solid component(s) and/or septa. This was seen in the majority of both serous and mucinous BOT cases. Importantly, based on comparison of sonographic images and histopathology of benign entities and malignancies, the microcystic appearance seems to be unique to BOTs. No similar description has been published previously. Utilization of this new marker should help to identify BOT correctly, discriminating it from ovarian cancer and benign ovarian pathology, and should ensure appropriate clinical and surgical management. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Assuntos
Doenças dos Anexos/patologia , Neoplasias Ovarianas/patologia , Ovário/patologia , Doenças dos Anexos/diagnóstico por imagem , Feminino , Humanos , Masculino , Neoplasias Ovarianas/diagnóstico por imagem , Ovário/diagnóstico por imagem , Estudos Retrospectivos , Sensibilidade e Especificidade , Ultrassonografia Doppler em CoresRESUMO
Outbreaks from zoonotic sources represent a threat to both human disease as well as the global economy. Despite a wealth of metagenomics studies, methods to leverage these datasets to identify future threats are underdeveloped. In this study, we describe an approach that combines existing metagenomics data with reverse genetics to engineer reagents to evaluate emergence and pathogenic potential of circulating zoonotic viruses. Focusing on the severe acute respiratory syndrome (SARS)-like viruses, the results indicate that the WIV1-coronavirus (CoV) cluster has the ability to directly infect and may undergo limited transmission in human populations. However, in vivo attenuation suggests additional adaptation is required for epidemic disease. Importantly, available SARS monoclonal antibodies offered success in limiting viral infection absent from available vaccine approaches. Together, the data highlight the utility of a platform to identify and prioritize prepandemic strains harbored in animal reservoirs and document the threat posed by WIV1-CoV for emergence in human populations.
Assuntos
Quirópteros/virologia , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronaviridae/virologia , Coronaviridae/patogenicidade , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células Cultivadas , Chlorocebus aethiops , Coronaviridae/genética , Coronaviridae/imunologia , Coronaviridae/isolamento & purificação , Coronaviridae/fisiologia , Infecções por Coronaviridae/prevenção & controle , Infecções por Coronaviridae/transmissão , Infecções por Coronaviridae/veterinária , Reações Cruzadas , Encefalite Viral/virologia , Células Epiteliais/virologia , Especificidade de Hospedeiro , Humanos , Pulmão/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/fisiologia , Mutação Puntual , Conformação Proteica , Receptores Virais/genética , Receptores Virais/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Células Vero , Replicação Viral , ZoonosesRESUMO
Continuous theta burst stimulation (cTBS) is a form of noninvasive repetitive brain stimulation that, when delivered over the contralesional hemisphere, can influence the excitability of the ipsilesional hemisphere in individuals with stroke. cTBS applied prior to skilled motor practice interventions may augment motor learning; however, there is a high degree of variability in individual response to this intervention. The main objective of the present study was to assess white matter biomarkers of response to cTBS paired with skilled motor practice in individuals with chronic stroke. We tested the effects of stimulation of the contralesional hemisphere at the site of the primary motor cortex (M1c) or primary somatosensory cortex (S1c) and a third group who received sham stimulation. Within each stimulation group, individuals were categorized into responders or nonresponders based on their capacity for motor skill change. Baseline diffusion tensor imaging (DTI) indexed the underlying white matter microstructure of a previously known motor learning network, named the constrained motor connectome (CMC), as well as the corticospinal tract (CST) of lesioned and nonlesioned hemispheres. Across practice, there were no differential group effects. However, when categorized as responders vs. nonresponders using change in motor behaviour, we demonstrated a significant difference in CMC microstructural properties (as measured by fractional anisotropy (FA)) for individuals in M1c and S1c groups. There were no significant differences between responders and nonresponders in clinical baseline measures or microstructural properties (FA) in the CST. The present study identifies a white matter biomarker, which extends beyond the CST, advancing our understanding of the importance of white matter networks for motor after stroke.
Assuntos
Terapia por Estimulação Elétrica/métodos , Córtex Motor/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Idoso , Biomarcadores , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/terapia , Resultado do TratamentoRESUMO
Background: Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation. Methods: We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration. Using DENV-specific human monoclonal antibodies (mAbs) and recombinant DENV displaying different serotype-specific Ab epitopes, we mapped the specificity of TDV-induced nAbs against DENV-1-3. Results: Nearly all subjects had high levels of DENV-2-specific nAbs directed to epitopes centered on domain III of the envelope protein. In some individuals, the vaccine induced nAbs that tracked with a DENV-1-specific neutralizing epitope centered on domain I of the envelope protein. The vaccine induced binding Abs directed to a DENV-3 type-specific neutralizing epitope, but findings of mapping of DENV-3 type-specific nAbs were inconclusive. Conclusion: Here we provide qualitative measures of the magnitude and epitope specificity of the nAb responses to TDV. This information will be useful for understanding the performance of TDV in clinical trials and for identifying correlates of protective immunity.
Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Dengue Grave/sangue , Dengue Grave/imunologia , Vacinas Atenuadas/imunologia , Adolescente , Adulto , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Método Duplo-Cego , Feminino , Humanos , Imunidade/imunologia , Masculino , Pessoa de Meia-Idade , Células U937 , Vacinação/métodos , Adulto JovemRESUMO
While free tissue transfer has long been established as a reliable microsurgical technique in the adult population, its application in pediatric reconstruction is a relatively recent phenomenon. Despite initial concerns regarding minute vessel diameters, increased propensity for vasospasm, and limited tissue availability, pediatric free tissue transfer is now a widely used technique that has demonstrated an acceptable level of donor and recipient site morbidity in children. Five flaps commonly used in the reconstruction of lower extremity trauma are discussed in this paper: the latissimus dorsi, rectus abdominis, anterolateral thigh, gracilis, and the subscapular and parascapular flaps. The indications, blood supply, advantages, and disadvantages of each are detailed. Incredible progress has been made in the application of microsurgical techniques to the pediatric population over the last several decades. With a healthy understanding of the anatomy and functionality of the donor site, the reconstructive surgeon can repair a variety of complex injuries with an acceptable morbidity and mortality rate.
Assuntos
Retalhos de Tecido Biológico , Traumatismos da Perna/cirurgia , Microcirurgia/métodos , Adolescente , Angiografia , Músculo Grácil/transplante , Humanos , Masculino , Planejamento de Assistência ao Paciente , Cuidados Pós-Operatórios/métodos , Cuidados Pré-Operatórios/métodos , Reto do Abdome/transplante , Transplante de Pele/métodos , Sítio Doador de Transplante/irrigação sanguíneaRESUMO
We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity.IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region of the S protein did not alter virus (TC-PC177) tissue tropism but reduced the virulence of the highly virulent PEDV strain PC22A in neonatal piglets. We also demonstrated that the primary infection with TC-PC177 failed to induce complete cross-protection against challenge by the highly virulent PEDV PC21A, suggesting that the 197-aa region may contain important epitopes for inducing protective immunity. Our results provide an insight into the role of this large deletion in virus propagation and pathogenicity. In addition, the reverse genetics platform of the PC22A strain was further optimized for the rescue of recombinant PEDV viruses in vitro This breakthrough allows us to investigate other virulence determinants of PEDV strains and will provide knowledge leading to better control PEDV infections.
Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Animais Recém-Nascidos , Infecções por Coronavirus/virologia , Proteção Cruzada , Diarreia/patologia , Diarreia/veterinária , Diarreia/virologia , Fezes/virologia , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Inoculações Seriadas , Glicoproteína da Espícula de Coronavírus/imunologia , Análise de Sobrevida , Suínos , Estados Unidos , Carga Viral , Eliminação de Partículas ViraisRESUMO
BACKGROUND: Change in cognitive ability is a commonly reported adverse effect by breast cancer survivors. The underlying etiology of cognitive complaints is unclear and to date, there is limited evidence for effective intervention strategies. Exercise has been shown to improve cognitive function in older adults and animal models treated with chemotherapy. This proof-of-concept randomized controlled trial tested the effect of aerobic exercise versus usual lifestyle on cognitive function in postmenopausal breast cancer survivors. METHODS: Women, aged 40 to 65 years, postmenopausal, stages I to IIIA breast cancer, and who self-reported cognitive dysfunction following chemotherapy treatment, were recruited and randomized to a 24-week aerobic exercise intervention (EX; n = 10) or usual lifestyle control (CON; n = 9). Participants completed self-report measures of the impact of cognitive issues on quality of life (Functional Assessment of Cancer Therapy-Cognitive version 3), objective neuropsychological testing, and functional magnetic resonance imaging at baseline and 24 weeks. RESULTS: Compared to CON, EX had a reduced time to complete a processing speed test (trail making test-A) (-14.2 seconds, P < .01; effect size 0.35). Compared to CON, there was no improvement in self-reported cognitive function and effect sizes were small. Interestingly, lack of between-group differences in Stroop behavioral performance was accompanied by functional changes in several brain regions of interest in EX compared to CON at 24 weeks. CONCLUSION: These findings provide preliminary proof-of-concept results for the potential of aerobic exercise to improve cancer-related cognitive impairment and will serve to inform the development of future trials.
Assuntos
Disfunção Cognitiva/terapia , Exercício Físico , Pós-Menopausa , Sobreviventes , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/psicologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/psicologia , Terapia por Exercício , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estudo de Prova de Conceito , Qualidade de Vida , Autorrelato , Resultado do TratamentoRESUMO
Endogenous and synthetic neuroactive steroids (NASs) or neurosteroids are effective modulators of multiple signaling pathways including receptors for the γ-aminobutyric acid A (GABAA) and glutamate, in particular N-methyl-d-aspartate (NMDA). These receptors are the major inhibitory and excitatory neurotransmitters in the central nervous system (CNS), and there is growing evidence suggesting that dysregulation of neurosteroid production plays a role in numerous neurological disorders. The significant unmet medical need for treatment of CNS disorders has increased the interest for these types of compounds. In this review, we highlight recent progress in the clinical development of NAS drug candidates, in addition to preclinical breakthroughs in the identification of novel NASs, mainly for GABAA and NMDA receptor modulation.
Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Descoberta de Drogas , Neurotransmissores/farmacologia , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Doenças do Sistema Nervoso Central/metabolismo , Relação Dose-Resposta a Droga , Humanos , Conformação Molecular , Neurotransmissores/química , Relação Estrutura-AtividadeRESUMO
Primary motor cortex (M1) excitability is modulated following a single session of cycling exercise. Specifically, short-interval intracortical inhibition and intracortical facilitation are altered following a session of cycling, suggesting that exercise affects the excitability of varied cortical circuits. Yet we do not know whether a session of exercise also impacts the excitability of interhemispheric circuits between, and other intracortical circuits within, M1. Here we present two experiments designed to address this gap in knowledge. In experiment 1, single and paired pulse transcranial magnetic stimulation (TMS) were used to measure intracortical circuits including, short-interval intracortical facilitation (SICF) tested at 1.1, 1.5, 2.7, 3.1 and 4.5 ms interstimulus intervals (ISIs), contralateral silent period (CSP) and interhemispheric interactions by measuring transcallosal inhibition (TCI) recorded from the abductor pollicus brevis muscles. All circuits were assessed bilaterally pre and two time points post (immediately, 30 min) moderate intensity lower limb cycling. SICF was enhanced in the left hemisphere after exercise at the 1.5 ms ISI. Also, CSP was shortened and TCI decreased bilaterally after exercise. In Experiment 2, corticospinal and spinal excitability were tested before and after exercise to investigate the locus of the effects found in Experiment 1. Exercise did not impact motor-evoked potential recruitment curves, Hoffman reflex or V-wave amplitudes. These results suggest that a session of exercise decreases intracortical and interhemispheric inhibition and increases facilitation in multiple circuits within M1, without concurrently altering spinal excitability. These findings have implications for developing exercise strategies designed to potentiate M1 plasticity and skill learning in healthy and clinical populations.