RESUMO
The impact of preserved museum specimens is transforming and increasing by three-dimensional (3D) imaging that creates high-fidelity online digital specimens. Through examples from the openVertebrate (oVert) Thematic Collections Network, we describe how we created a digitization community dedicated to the shared vision of making 3D data of specimens available and the impact of these data on a broad audience of scientists, students, teachers, artists, and more. High-fidelity digital 3D models allow people from multiple communities to simultaneously access and use scientific specimens. Based on our multiyear, multi-institution project, we identify significant technological and social hurdles that remain for fully realizing the potential impact of digital 3D specimens.
RESUMO
Jumping is a crucial behavior in fitness-critical activities including locomotion, resource acquisition, courtship displays and predator avoidance. In primates, paleontological evidence suggests selection for enhanced jumping ability during their early evolution. However, our interpretation of the fossil record remains limited, as no studies have explicitly linked levels of jumping performance with interspecific skeletal variation. We used force platform analyses to generate biomechanical data on maximal jumping performance in three genera of callitrichine monkeys falling along a continuum of jumping propensity: Callimico (relatively high propensity jumper), Saguinus (intermediate jumping propensity) and Callithrix (relatively low propensity jumper). Individuals performed vertical jumps to perches of increasing height within a custom-built tower. We coupled performance data with high-resolution micro-CT data quantifying bony features thought to reflect jumping ability. Levels of maximal performance between species - e.g. maximal take-off velocity of the center of mass (CoM) - parallel established gradients of jumping propensity. Both biomechanical analysis of jumping performance determinants (e.g. CoM displacement, maximal force production and peak mechanical power during push-off) and multivariate analyses of bony hindlimb morphology highlight different mechanical strategies among taxa. For instance, Callimico, which has relatively long hindlimbs, followed a strategy of fully extending of the limbs to maximize CoM displacement - rather than force production - during push-off. In contrast, relatively shorter-limbed Callithrix depended mostly on relatively high push-off forces. Overall, these results suggest that leaping performance is at least partially associated with correlated anatomical and behavioral adaptations, suggesting the possibility of improving inferences about performance in the fossil record.
Assuntos
Locomoção , Animais , Fenômenos Biomecânicos , Locomoção/fisiologia , Callitrichinae/fisiologia , Callitrichinae/anatomia & histologia , Masculino , Feminino , Microtomografia por Raio-X , Especificidade da EspécieRESUMO
Morphological traits suggesting powerful jumping abilities are characteristic of early crown primate fossils. Because tree squirrels lack certain 'primatelike' grasping features but frequently travel on the narrow terminal branches of trees, they make a viable extant model for an early stage of primate evolution. Here, we explore biomechanical determinants of jumping performance in the arboreal Eastern gray squirrel (Sciurus carolinensis, n = 3) as a greater understanding of the biomechanical strategies that squirrels use to modulate jumping performance could inform theories of selection for increased jumping ability during early primate evolution. We assessed vertical jumping performance by using instrumented force platforms upon which were mounted launching supports of various sizes, allowing us to test the influence of substrate diameter on jumping kinetics and performance. We used standard ergometric methods to quantify jumping parameters (e.g., takeoff velocity, total displacement, peak mechanical power) from force platform data during push-off. We found that tree squirrels display divergent mechanical strategies according to the type of substrate, prioritizing force production on flat ground versus center of mass displacement on narrower poles. As jumping represents a significant part of the locomotor behavior of most primates, we suggest that jumping from small arboreal substrates may have acted as a potential driver of the selection for elongated hindlimb segments in primates, allowing the center of mass to be accelerated over a longer distance-and thereby reducing the need for high substrate reaction forces.
Assuntos
Primatas , Sciuridae , Animais , Fenômenos Biomecânicos , LocomoçãoRESUMO
We describe the first known navicular bones for an Eocene euprimate from Europe and assess their implications for early patterns of locomotor evolution in primates. Recovered from the fossil site of Sant Jaume de Frontanyà-3C (Barcelona, Spain), the naviculars are attributed to Anchomomys frontanyensis. The small size of A. frontanyensis allows us to consider behavioral implications of comparisons with omomyiforms, regardless of allometric sources of navicular variation. Researchers usually consider omomyiforms to be more prone to leaping than contemporaneous adapiforms partly because of the more pronounced elongation of omomyiform tarsal elements. However, A. frontanyensis differs from other adapiforms and is similar to some omomyiforms in its more elongated navicular proportions. Although this might raise questions about attribution of these naviculars to A. frontanyensis, the elements exhibit clear strepsirrhine affinities leaving little doubt about the attribution: the bones' mesocuneiform facets contact their cuboid facets. We further propose that this strepsirrhine-specific feature in A. frontanyensis and other adapiforms reflects use of more inverted foot postures and potentially smaller substrates than sympatric omomyiforms that lack it. Thus substrate differences may have influenced niche partitioning in Eocene euprimate communities along with differences in locomotor agility. As previous studies on the astragalus and the calcaneus have suggested, this study on the navicular is consistent with the hypothesis that the locomotor mode of A. frontanyensis was similar to that of extant cheirogaleids, especially species of Microcebus and Mirza.
Assuntos
Fósseis/anatomia & histologia , Locomoção , Strepsirhini/anatomia & histologia , Ossos do Tarso/anatomia & histologia , Animais , Evolução Biológica , Espanha , Strepsirhini/fisiologiaRESUMO
Omomyiform primates are among the most basal fossil haplorhines, with the oldest classified in the genus Teilhardina and known contemporaneously from Asia, Europe, and North America during the Paleocene-Eocene Thermal Maximum (PETM) â¼56 mya. Characterization of morphology in this genus has been limited by small sample sizes and fragmentary fossils. A new dental sample (n = 163) of the North American species Teilhardina brandti from PETM strata of the Bighorn Basin, Wyoming, documents previously unknown morphology and variation, prompting the need for a systematic revision of the genus. The P4 of T. brandti expresses a range of variation that encompasses that of the recently named, slightly younger North American species 'Teilhardina gingerichi,' which is here synonymized with T. brandti. A new partial dentary preserving the alveoli for P1-2 demonstrates that T. brandti variably expresses an unreduced, centrally-located P1, and in this regard is similar to that of T. asiatica from China. This observation, coupled with further documentation of variability in P1 alveolar size, position, and presence in the European type species T. belgica, indicates that the original diagnosis of T. asiatica is insufficient at distinguishing this species from either T. belgica or T. brandti. Likewise, the basal omomyiform 'Archicebus achilles' requires revision to be distinguished from Teilhardina. Results from a phylogenetic analysis of 1890 characters scored for omomyiforms, adapiforms, and other euarchontan mammals produces a novel clade including T. magnoliana, T. brandti, T. asiatica, and T. belgica to the exclusion of two species previously referred to Teilhardina, which are here classified in a new genus (Bownomomys americanus and Bownomomys crassidens). While hypotheses of relationships and inferred biogeographic patterns among species of Teilhardina could change with the discovery of more complete fossils, the results of these analyses indicate a similar probability that the genus originated in either Asia or North America.
Assuntos
Distribuição Animal , Fósseis/anatomia & histologia , Primatas/anatomia & histologia , Animais , Ásia , Europa (Continente) , América do Norte , Primatas/classificaçãoRESUMO
Given that most species of primates are predominantly arboreal, maintaining the ability to move among branches of varying sizes has presumably been a common selective force in primate evolution. However, empirical evaluations of the relationships between morphological variation and characteristics of substrate geometry, such as substrate diameter relative to an animal's body mass, have been limited by the lack of quantified substrate usage in the wild. Here we use recently published quantitative data to assess the relationships between relative substrate size and talar morphology in nine New World monkey species at the Tiputini Biodiversity Station, Ecuador. Within this sample, both fibular facet angle (the angle between the fibular facet and the trochlear rims) and body-mass-standardized area of the medial tibial facet decrease as average and maximum relative substrate size increases. Correlations between medial tibial facet area and relative substrate size are driven by the inclusion of callitrichids in this sample. Nevertheless, these findings strengthen the hypothesis that variation in fibular facet orientation and medial tibial facet area are functionally correlated with habitual degrees of pedal inversion. They also strengthen the notion that evolutionarily changing body mass could impact habitat geometry experienced by a lineage and thereby substantially impact major trends in primate morphological evolution. This study highlights the importance of empirical data on substrate use in living primates for inferring functional and evolutionary implications of morphological variation.
Assuntos
Ecossistema , Platirrinos/anatomia & histologia , Platirrinos/fisiologia , Tálus/anatomia & histologia , Animais , Equador , ÁrvoresRESUMO
OBJECTIVES: In humans, neuronal processes related to brain development elevate the metabolic rate of brain tissue relative to the body during early childhood. This phenomenon has been hypothesized to contribute to slow somatic growth in preadolescent Homo sapiens. The uncoupling of the brain's metabolic rate from brain size during development complicates the study of the evolutionary emergence of these traits in the fossil record. Here, we extend a method previously developed to predict interspecific differences in cerebral blood flow (a correlate of cerebral glucose use) to predict ontogenetic changes in human brain metabolism. MATERIALS AND METHODS: Radii of the carotid foramen from an ontogenetic series of modern human crania were used to predict blood flow rates through the internal carotid arteries (ICA), which were compared to empirically measured ICA flow and brain metabolism values. RESULTS: Predictions of both absolute ICA blood flow rates and perfusion (ICA blood flow rates relative to brain size) generally match measured values in infancy and childhood. Maximum predicted ICA blood flow rates and perfusion were found to occur between ages 5 and 8, which roughly correspond to the age of maximum measured ICA blood flow rate and absolute and brain mass-specific rate of whole brain glucose uptake. DISCUSSION: These findings suggest that, during human growth and development, the size of the carotid foramen corresponds well to blood flow requirements through the ICA, and the method tested here may provide new opportunities for studying developmental changes in brain metabolism using osteological samples, including fossil hominins.
Assuntos
Encéfalo/metabolismo , Artéria Carótida Interna/fisiologia , Circulação Cerebrovascular/fisiologia , Crânio/anatomia & histologia , Adolescente , Adulto , Antropologia Física , Glicemia/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adulto JovemRESUMO
Supplying the central nervous system with oxygen and glucose for metabolic activities is a critical function for all animals at physiologic, anatomical, and behavioral levels. A relatively proximate challenge to nourishing the brain is maintaining adequate blood flow. Euarchontans (primates, dermopterans and treeshrews) display a diversity of solutions to this challenge. Although the vertebral artery is a major encephalic vessel, previous research has questioned its importance for irrigating the cerebrum. This presents a puzzling scenario for certain strepsirrhine primates (non-cheirogaleid lemuriforms) that have reduced promontorial branches of the internal carotid artery and no apparent alternative encephalic vascular route except for the vertebral artery. Here, we present results of phylogenetic comparative analyses of data on the cross-sectional area of bony canals that transmit the vertebral artery (transverse foramina). These results show that, across primates (and within major primate subgroups), variation in the transverse foramina helps significantly to explain variation in forebrain mass even when variation in promontorial canal cross-sectional areas are also considered. Furthermore, non-cheirogaleid lemuriforms have larger transverse foramina for their endocranial volume than other euarchontans, suggesting that the vertebral arteries compensate for reduced promontorial artery size. We also find that, among internal carotid-reliant euarchontans, species that are more encephalized tend to have a promontorial canal that is larger relative to the transverse foramina. Tentatively, we consider the correlation between arterial canal diameters (as a proxy for blood flow) and brain metabolic demands. The results of this analysis imply that human investment in brain metabolism (â¼27% of basal metabolic rate) may not be exceptional among euarchontans.
Assuntos
Encéfalo/anatomia & histologia , Artéria Carótida Interna/anatomia & histologia , Primatas/anatomia & histologia , Escandêntias/anatomia & histologia , Artéria Vertebral/anatomia & histologia , Anatomia Comparada , Animais , Metabolismo Basal , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Artéria Carótida Interna/fisiologia , Filogenia , Primatas/sangue , Primatas/fisiologia , Escandêntias/sangue , Escandêntias/fisiologia , Artéria Vertebral/fisiologiaRESUMO
Euprimates are unusual among mammals in having fingers and toes with flat nails. While it seems clear that the ancestral stock from which euprimates evolved had claw-bearing digits, the available fossil record has not yet contributed a detailed understanding of the transition from claws to nails. This study helps clarify the evolutionary history of the second pedal digit with fossils representing the distal phalanx of digit two (dpII), and has broader implications for other digits. Among extant primates, the keratinized structure on the pedal dpII widely varies in form. Extant strepsirrhines and tarsiers have narrow, distally tapering, dorsally inclined nails (termed a 'grooming claws' for their use in autogrooming), while extant anthropoids have more typical nails that are wider and lack distal tapering or dorsal inclination. At least two fossil primate species thought to be stem members of the Strepsirrhini appear to have had grooming claws, yet reconstructions of the ancestral euprimate condition based on direct evidence from the fossil record are ambiguous due to inadequate fossil evidence for the earliest haplorhines. Seven recently discovered, isolated distal phalanges from four early Eocene localities in Wyoming (USA) closely resemble those of the pedal dpII in extant prosimians. On the basis of faunal associations, size, and morphology, these specimens are recognized as the grooming phalanges of five genera of haplorhine primates, including one of the oldest known euprimates (â¼56 Ma), Teilhardina brandti. Both the phylogenetic distribution and antiquity of primate grooming phalanges now strongly suggest that ancestral euprimates had grooming claws, that these structures were modified from a primitive claw rather than a flat nail, and that the evolutionary loss of 'grooming claws' represents an apomorphy for crown anthropoids.
Assuntos
Evolução Biológica , Falanges dos Dedos da Mão/anatomia & histologia , Fósseis/anatomia & histologia , Casco e Garras/anatomia & histologia , Primatas/anatomia & histologia , Animais , WyomingRESUMO
Earliest Paleocene Purgatorius often is regarded as the geologically oldest primate, but it has been known only from fossilized dentitions since it was first described half a century ago. The dentition of Purgatorius is more primitive than those of all known living and fossil primates, leading some researchers to suggest that it lies near the ancestry of all other primates; however, others have questioned its affinities to primates or even to placental mammals. Here we report the first (to our knowledge) nondental remains (tarsal bones) attributed to Purgatorius from the same earliest Paleocene deposits that have yielded numerous fossil dentitions of this poorly known mammal. Three independent phylogenetic analyses that incorporate new data from these fossils support primate affinities of Purgatorius among euarchontan mammals (primates, treeshrews, and colugos). Astragali and calcanei attributed to Purgatorius indicate a mobile ankle typical of arboreal euarchontan mammals generally and of Paleocene and Eocene plesiadapiforms specifically and provide the earliest fossil evidence of arboreality in primates and other euarchontan mammals. Postcranial specializations for arboreality in the earliest primates likely played a key role in the evolutionary success of this mammalian radiation in the Paleocene.
Assuntos
Fósseis , Primatas/anatomia & histologia , Ossos do Tarso/anatomia & histologia , Animais , FilogeniaRESUMO
Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.
Assuntos
Curadoria de Dados/normas , Conjuntos de Dados como Assunto , Disciplinas das Ciências Biológicas/estatística & dados numéricos , Reprodutibilidade dos Testes , Pesquisa/normasRESUMO
The fossil record of early primates is largely comprised of dentitions. While teeth can indicate phylogenetic relationships and dietary preferences, they say little about hypotheses pertaining to the positional behavior or substrate preference of the ancestral crown primate. Here we report the discovery of a talus bone of the dentally primitive fossil euprimate Donrussellia provincialis. Our comparisons and analyses indicate that this talus is more primitive than that of other euprimates. It lacks features exclusive to strepsirrhines, like a large medial tibial facet and a sloping fibular facet. It also lacks the medially positioned flexor-fibularis groove of extant haplorhines. In these respects, the talus of D. provincialis comes surprisingly close to that of the pen-tailed treeshrew, Ptilocercus lowii, and extinct plesiadapiforms for which tali are known. However, it differs from P. lowii and is more like other early euprimates in exhibiting an expanded posterior trochlear shelf and deep talar body. In overall form, the bone approximates more leaping reliant euprimates. The phylogenetically basal signal from the new fossil is confirmed with cladistic analyses of two different character matrices, which place D. provincialis as the most basal strepsirrhine when the new tarsal data are included. Interpreting our results in the context of other recent discoveries, we conclude that the lineage leading to the ancestral euprimate had already become somewhat leaping specialized, while certain specializations for the small branch niche came after crown primates began to radiate.
Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Animais , Humanos , Filogenia , Primatas/classificação , Especificidade da EspécieRESUMO
Studies of ancient human skeletal remains frequently proceed from the assumption that individuals with robust limb bones and/or rugose, hypertrophic entheses can be inferred to have been highly physically active during life. Here, we experimentally test this assumption by measuring the effects of exercise on limb bone structure and entheseal morphology in turkeys. Growing females were either treated with a treadmill-running regimen for 10 weeks or served as controls. After the experiment, femoral cortical and trabecular bone structure were quantified with µCT in the mid-diaphysis and distal epiphysis, respectively, and entheseal morphology was quantified in the lateral epicondyle. The results indicate that elevated levels of physical activity affect limb bone structure but not entheseal morphology. Specifically, animals subjected to exercise displayed enhanced diaphyseal and trabecular bone architecture relative to controls, but no significant difference was detected between experimental groups in entheseal surface topography. These findings suggest that diaphyseal and trabecular structure are more reliable proxies than entheseal morphology for inferring ancient human physical activity levels from skeletal remains.
Assuntos
Exercício Físico/fisiologia , Fêmur/anatomia & histologia , Corrida/fisiologia , Animais , Densidade Óssea , Osso e Ossos/anatomia & histologia , Diáfises/anatomia & histologia , Diáfises/fisiologia , Feminino , Fêmur/fisiologia , Fósseis/anatomia & histologia , HumanosRESUMO
Very shortly after the disappearance of the non-avian dinosaurs, the first mammals that had features similar to those of primates started appearing. These first primitive forms went on to spawn a rich diversity of plesiadapiforms, often referred to as archaic primates. Like many living primates, plesiadapiforms were small arboreal animals that generally ate fruit, insects, and, occasionally, leaves. However, this group lacked several diagnostic features of euprimates. They also had extraordinarily diverse specializations, represented in eleven families and more than 140 species, which, in some cases, were like nothing seen since in the primate order. Plesiadapiforms are known from all three Northern continents, with representatives that persisted until at least 37 million years ago. In this article we provide a summary of the incredible diversity of plesiadapiform morphology and adaptations, reviewing our knowledge of all eleven families. We also discuss the challenges that remain in our understanding of their ecology and evolution.
Assuntos
Evolução Biológica , Fósseis , Primatas , Animais , Antropologia Física , Osso e Ossos/anatomia & histologia , Filogenia , Primatas/anatomia & histologia , Primatas/classificação , Dente/anatomia & histologiaRESUMO
OBJECTIVE: On the talus, the position and depth of the groove for the flexor hallucis longus tendon have been used to infer phylogenetic affinities and positional behaviors of fossil primates. This study quantifies aspects of the flexor hallucis longus groove (FHLG) to test if: (1) a lateral FHLG is a derived strepsirrhine feature, (2) a lateral FHLG reflects inverted and abducted foot postures, and (3) a deeper FHLG indicates a larger muscle. METHODS: We used linear measurements of microCT-generated models from a sample of euarchontans (n = 378 specimens, 125 species) to quantify FHLG position and depth. Data are analyzed with ANOVA, Ordinary and Phylogenetic Generalized Least Squares, and Bayesian Ancestral State Reconstruction (ASR). RESULTS: Extant strepsirrhines, adapiforms, plesiadapiforms, dermopterans, and Ptilocercus exhibit lateral FHLGs. Extant anthropoids, subfossil lemurs, and Tupaia have medial FHLGs. FHLGs of omomyiforms and basal fossil anthropoids are intermediate between those of strepsirrhines and extant anthropoids. FHLG position has few correlations with pedal inversion features. Relative FHLG depth is not significantly correlated with body mass. ASRs support a directional model for FHLG position and a random walk model for FHLG depth. CONCLUSIONS: The prevalence of lateral FHLGs in many non-euprimates suggests a lateral FHLG is not a derived strepsirrhine feature. The lack of correlations with pedal inversion features suggests a lateral FHLG is not a sufficient indicator of strepsirrhine-like foot postures. Instead, a lateral FHLG may reduce the risk of tendon displacement in abducted foot postures on large diameter supports. A deep FHLG does not indicate a larger muscle, but likely reduces bowstringing during plantarflexion.
Assuntos
Evolução Biológica , Fósseis , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Animais , Feminino , Fíbula/anatomia & histologia , História Antiga , Humanos , Masculino , Filogenia , Primatas/classificaçãoRESUMO
The pterion, on the lateral aspect of the cranium, is where the zygomatic, frontal, sphenoid, squamosal, and parietal bones approach and contact. The configuration of these bones distinguishes New and Old World anthropoids: most extant platyrrhines exhibit contact between the parietal and zygomatic bones, while all known catarrhines exhibit frontal-alisphenoid contact. However, it is thought that early stem-platyrrhines retained the apparently primitive catarrhine condition. Here we re-evaluate the condition of key fossil taxa using µCT (micro-computed tomography) imaging. The single known specimen of Tremacebus and an adult cranium of Antillothrix exhibit the typical platyrrhine condition of parietal-zygomatic contact. The same is true of one specimen of Homunculus, while a second specimen has the 'catarrhine' condition. When these new data are incorporated into an ancestral state reconstruction, they support the conclusion that pterion frontal-alisphenoid contact characterized the last common ancestor of crown anthropoids and that contact between the parietal and zygomatic is a synapomorphy of Platyrrhini.
Assuntos
Catarrinos/anatomia & histologia , Fósseis/anatomia & histologia , Platirrinos/anatomia & histologia , Crânio/anatomia & histologia , Animais , Catarrinos/classificação , Filogenia , Platirrinos/classificação , Especificidade da EspécieRESUMO
Astragali and calcanei of Anchomomys frontanyensis, a small adapiform from the middle Eocene of Sant Jaume de Frontanyà (Southern Pyrenean basins, northeastern Spain) are described in detail. Though these bones have been known for some time, they have never been carefully analyzed in a context that is comprehensively comparative, quantitative, considers sample variation (astragalus n = 4; calcaneus n = 16), and assesses the phylogenetic significance of the material in an explicit cladistic context, as we do here. Though these bones are isolated, regression analyses provide the first formal statistical support for attribution to A. frontanyensis. The astragalus presents features similar to those of the small stem strepsirrhine Djebelemur from the middle Eocene of Tunisia, while the calcaneus more closely resembles those of the basal omomyiform Teilhardina. The new phylogenetic analyses that include Anchomomys' postcranial and dental data recover anchomomyins outside of the adapiform clade, and closer to djebelemurids, azibiids, and crown strepsirrhines. The small size of A. frontanyensis allows comparison of similarly small adapiforms and omomyiforms (haplorhines) such that observed variation has more straightforward implications for function. Previous studies have demonstrated that distal calcaneal elongation is reflective of leaping proclivity when effects of body mass are appropriately accounted for; in this context, A. frontanyensis has calcaneal elongation suggesting a higher degree of leaping specialization than other adapiforms and even some early omomyiforms. Moreover, comparison to a similarly-sized early adapiform from India, Marcgodinotius (which shows no calcaneal elongation) confirms that high distal calcaneal elongation in A. frontanyensis cannot be simply explained by allometric effects of small size compared to larger adapiform taxa. This pattern is consistent with the idea that significant distal calcaneal elongation evolved at least twice in early euprimates, and that early primate niche space frequently included demands for increased leaping specialization.
Assuntos
Evolução Biológica , Calcâneo/anatomia & histologia , Fósseis/anatomia & histologia , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Animais , EspanhaRESUMO
Well-preserved crania of notharctine adapiforms from the Eocene of North America provide the best direct evidence available for inferring neuroanatomy and encephalization in early euprimates (crown primates). Virtual endocasts of the notharctines Notharctus tenebrosus (n = 3) and Smilodectes gracilis (n = 4) from the middle Eocene Bridger formation of Wyoming, and the late Eocene European adapid adapiform Adapis parisiensis (n = 1), were reconstructed from high-resolution X-ray computed tomography (CT) data. While the three species share many neuroanatomical similarities differentiating them from plesiadapiforms (stem primates) and extant euprimates, our sample of N. tenebrosus displays more variation than that of S. gracilis, possibly related to differences in the patterns of cranial sexual dimorphism or within-lineage evolution. Body masses predicted from associated teeth suggest that N. tenebrosus was larger and had a lower encephalization quotient (EQ) than S. gracilis, despite their close relationship and similar inferred ecologies. Meanwhile, body masses predicted from cranial length of the same specimens suggest that the two species were more similar, with overlapping body mass and EQ, although S. gracilis exhibits a range of EQs shifted upwards relative to that of N. tenebrosus. While associated data from other parts of the skeleton are mostly lacking for specimens included in this study, measurements for unassociated postcrania attributed to these species yield body mass and EQ estimates that are also more similar to each other than those based on teeth. Regardless of the body mass prediction method used, results suggest that the average EQ of adapiforms was similar to that of plesiadapiforms, only overlapped the lower quadrant for the range of extant strepsirrhines, and did not overlap with the range of extant haplorhines. However, structural changes evident in these endocasts suggest that early euprimates relied more on vision than olfaction relative to plesiadapiforms, despite having relatively small endocranial volumes compared to extant taxa.
Assuntos
Primatas/anatomia & histologia , Primatas/classificação , Crânio/anatomia & histologia , Animais , Feminino , Fósseis , Masculino , Tomógrafos Computadorizados , WyomingRESUMO
Primate species typically differ from other mammals in having bony canals that enclose the branches of the internal carotid artery (ICA) as they pass through the middle ear. The presence and relative size of these canals varies among major primate clades. As a result, differences in the anatomy of the canals for the promontorial and stapedial branches of the ICA have been cited as evidence of either haplorhine or strepsirrhine affinities among otherwise enigmatic early fossil euprimates. Here we use micro X-ray computed tomography to compile the largest quantitative dataset on ICA canal sizes. The data suggest greater variation of the ICA canals within some groups than has been previously appreciated. For example, Lepilemur and Avahi differ from most other lemuriforms in having a larger promontorial canal than stapedial canal. Furthermore, various lemurids are intraspecifically variable in relative canal size, with the promontorial canal being larger than the stapedial canal in some individuals but not others. In species where the promontorial artery supplies the brain with blood, the size of the promontorial canal is significantly correlated with endocranial volume (ECV). Among species with alternate routes of encephalic blood supply, the promontorial canal is highly reduced relative to ECV, and correlated with both ECV and cranium size. Ancestral state reconstructions incorporating data from fossils suggest that the last common ancestor of living primates had promontorial and stapedial canals that were similar to each other in size and large relative to ECV. We conclude that the plesiomorphic condition for crown primates is to have a patent promontorial artery supplying the brain and a patent stapedial artery for various non-encephalic structures. This inferred ancestral condition is exhibited by treeshrews and most early fossil euprimates, while extant primates exhibit reduction in one canal or another. The only early fossils deviating from this plesiomorphic condition are Adapis parisiensis with a reduced promontorial canal, and Rooneyia and Mahgarita with reduced stapedial canals.
Assuntos
Artéria Carótida Interna/anatomia & histologia , Orelha Média/anatomia & histologia , Fósseis/anatomia & histologia , Filogenia , Primatas/anatomia & histologia , Animais , Orelha Média/irrigação sanguínea , Orelha Média/diagnóstico por imagem , Primatas/classificação , Crânio/anatomia & histologia , Microtomografia por Raio-XRESUMO
OBJECTIVES: The disappearance of the North American plesiadapoids (stem primates, or plesiadapiforms) in the latest Paleocene has been attributed to competition with rodents over dietary resources. This study compares molar morphology of plesiadapoids and early rodents to assess whether all taxa were adapted to consuming foods of the same structural properties with similar mechanical efficacy. MATERIALS AND METHODS: Micro-CT scans of second mandibular molars (M2 s) of plesiadapoids (n = 181) and ischyromyid (early fossil) rodents (n = 13) were evaluated using Dirichlet normal energy (DNE), a dental topographic metric that quantifies the curvature of a tooth's occlusal surface, independent of the orientation of the occlusal plane; this metric can be used to infer diet. RESULTS: Comparisons of DNE values for plesiadapoids and rodents show that rodents shared functionally similar dental morphology with at least some plesiadapid plesiadapoids and thus were likely adapted to processing foods with similar physical properties. However, the DNE values for rodents contrast markedly with those for the other two plesiadapoid families, the Carpolestidae and Saxonellidae. CONCLUSIONS: It is unlikely that direct competition over food resources with rodents played a major role in the extinction of carpolestids and saxonellids, as members of these families were capable of consuming a range of foods that were not accessible to rodents. Although several plesiadapid species overlap with rodents in their range of DNE values, only three overlap in time. One of these (Plesiadapis cookei) may have been too large to be in direct competition with rodents, another (Plesiadapis dubius) has DNE values substantially different (higher) than those of rodents, whereas the third, Chiromyoides, has teeth of both a similar size and DNE value to those of Clarkforkian rodents. If dietary niche overlap with rodents played a direct role in the decline of plesiadapiforms, it can only have potentially done so for Chiromyoides.