Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 111(5): 1469-1485, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789009

RESUMO

Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.


Assuntos
Picea , Traqueófitas , Etiquetas de Sequências Expressas , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Picea/genética , Traqueófitas/genética
2.
Funct Integr Genomics ; 23(1): 9, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538186

RESUMO

Advancements in technology over the past few decades have resulted in the development of genome sequencing at lower costs. Protocols, costs, and the amount of data produced by different sequencing technologies are highly variable. Ion Torrent and Illumina sequencing instruments are two sequencing technologies which use very similar library preparation procedures. Enzymatic combinations can be changed in genotyping by sequencing (GbS) library protocols without significant adjustments. To compare the outputs from two different GbS procedures, we sequenced samples of two sister species of yellow-nosed albatross collected at multiple geographic locations. The data sets involving different sequencing instruments and enzymatic combinations were analysed using the Stacks pipeline and aligned to the same reference genome. Both procedures identified the same genetic clusters separating Atlantic and Indian yellow-nosed albatross and substructure within Indian yellow-nosed albatross.


Assuntos
Genoma , Técnicas de Genotipagem , Genótipo , Técnicas de Genotipagem/métodos , Mapeamento Cromossômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genética Populacional , Polimorfismo de Nucleotídeo Único
3.
BMC Psychiatry ; 22(1): 140, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193541

RESUMO

BACKGROUND: Ketamine has emerged as a rapid-acting antidepressant in treatment-resistant depression (TRD) increasingly used in non-research, clinical settings. Few studies, however, have examined neurocognitive effects of repeated racemic ketamine infusion treatments in patients with TRD. In an effort to identify potential effects after serial infusions, we conducted a retrospective chart review to identify statistically significant changes in cognition in patient undergoing serial intravenous infusions; concomitantly, we examined baseline cognition as potential predictor of anti-depressant potential. METHODS: Twenty-two patients with TRD were examined after they finished the induction phase of 8-10 repeated intravenous ketamine infusions and completed the assessments of their depressive symptoms (measured by the 16-item Quick Inventory of Depressive Symptomatology-Self Report Scale: QIDS-SR16) and cognitive function (measured by the Montreal Cognitive Assessment: MoCA) before the first and the last ketamine treatments. RESULTS: Repeated ketamine infusions administered through an escalating dose protocol with 8-10 infusion sessions produced a 47.2% reduction response in depression; there was no evidence of impairment as reflected in MoCA testing. There was a moderate association between baseline cognition and antidepressant response with a Pearson correlation of 0.453. CONCLUSION: In this naturalistic sample of patients with TRD in our clinical service, repeated ketamine infusions significantly decreased depression symptoms without impairing cognitive performance. The baseline cognition may positively predict antidepressant responses of repeated ketamine treatment.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Ketamina , Antidepressivos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Humanos , Infusões Intravenosas , Ketamina/uso terapêutico , Estudos Retrospectivos
4.
Food Microbiol ; 101: 103877, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579845

RESUMO

Salmonella enterica subsp. enterica is one of the leading causes of human foodborne infections and several outbreaks are now associated with the consumption of fresh fruit and vegetables. This study aims at evaluating whether Salmonella virulence can be linked to an enhanced ability to survive successive digestive environments. Thirteen S. enterica strains were selected according to high and low virulence phenotypes. Lettuce inoculated separately with each S. enterica strain was used as food matrix in the TNO gastrointestinal model (TIM-1) of the human upper gastrointestinal tract. During the passage in the stomach, counts determined using PMA-qPCR were 2-5 logs higher than the cultivable counts for all strains indicating the presence of viable but non-cultivable cells. Bacterial growth was observed in the duodenum compartment after 180 min for all but one strain and growth continued into the ileal compartment. After passage through the simulated gastrointestinal tract, both virulent and avirulent S. enterica strains survived but high virulence strains had a significantly (p = 0.004) better average survival rate (1003 %-3753 %) than low virulence strains (from 25 % to 3730%). The survival rates of S. enterica strains could be linked to the presence of genes associated with acid and bile resistance and their predicted products. The presence of single nucleotide polymorphisms may also impact the function of virulence associated genes and play a role in the resulting phenotype. These data provide an understanding of the relationship between measured virulence potential and survival of S. enterica during dynamic simulated gastrointestinal transit.


Assuntos
Trato Gastrointestinal/microbiologia , Salmonella/patogenicidade , Virulência , Humanos , Modelos Biológicos
5.
Bioinformatics ; 36(1): 26-32, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173057

RESUMO

MOTIVATION: Identification of DNA sequence variations such as single nucleotide polymorphisms (SNPs) is a fundamental step toward genetic studies. Reduced-representation sequencing methods have been developed as alternatives to whole genome sequencing to reduce costs and enable the analysis of many more individual. Amongst these methods, restriction site associated sequencing (RSAS) methodologies have been widely used for rapid and cost-effective discovery of SNPs and for high-throughput genotyping in a wide range of species. Despite the extensive improvements of the RSAS methods in the last decade, the estimation of the number of reads (i.e. read depth) required per sample for an efficient and effective genotyping remains mostly based on trial and error. RESULTS: Herein we describe a bioinformatics tool, DepthFinder, designed to estimate the required read counts for RSAS methods. To illustrate its performance, we estimated required read counts in six different species (human, cattle, spruce budworm, salmon, barley and soybean) that cover a range of different biological (genome size, level of genome complexity, level of DNA methylation and ploidy) and technical (library preparation protocol and sequencing platform) factors. To assess the prediction accuracy of DepthFinder, we compared DepthFinder-derived results with independent datasets obtained from an RSAS experiment. This analysis yielded estimated accuracies of nearly 94%. Moreover, we present DepthFinder as a powerful tool to predict the most effective size selection interval in RSAS work. We conclude that DepthFinder constitutes an efficient, reliable and useful tool for a broad array of users in different research communities. AVAILABILITY AND IMPLEMENTATION: https://bitbucket.org/jerlar73/DepthFinder. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Software , Sequenciamento Completo do Genoma , Animais , Bovinos , Genoma/genética , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
6.
Theor Appl Genet ; 133(2): 653-664, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31802146

RESUMO

We adapted and tested a Rapture assay as an enhancement of genotyping-by-sequencing (GBS) in oat (Avena sativa). This assay was based on an additional bait-based capture of specific DNA fragments representing approximately 10,000 loci within the enzyme-based complexity reduction provided by GBS. By increasing the specificity of GBS to include only those fragments that provided effective polymorphic markers, it was possible to achieve deeper sequence coverage of target markers, while simultaneously sequencing a greater number of samples on a single unit of next-generation sequencing. The Rapture assay consistently out-performed the GBS assay when filtering markers at 80% completeness or greater, even though the total number of reads per sample was only 25% that of GBS. The reduced sequencing cost per sample for Rapture more than compensated for the increased cost of the capture reaction. Thus, Rapture generated a more repeatable set of marker data at a cost per sample that was approximately 40% less than GBS. Additional advantages of Rapture included accurate identification of heterozygotes, and the possibility to increase the depth or length of sequence reads with less impact on the cost per sample. We tested Rapture for genomic selection and diversity analysis and concluded that it is an effective alternative to GBS or other SNP assays. We recommend the use of Rapture in oat and the development of similar assays in other crops with large complex genomes.


Assuntos
Avena/genética , Produtos Agrícolas/genética , Técnicas de Genotipagem/métodos , Alelos , Confiabilidade dos Dados , Genoma de Planta , Genômica , Genótipo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
BMC Genomics ; 20(1): 634, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387530

RESUMO

BACKGROUND: The effective use of mutant populations for reverse genetic screens relies on the population-wide characterization of the induced mutations. Genome- and population-wide characterization of the mutations found in fast neutron populations has been hindered, however, by the wide range of mutations generated and the lack of affordable technologies to detect DNA sequence changes. In this study, we therefore aimed to test whether genotyping-by-sequencing (GBS) technology could be used to characterize copy number variation (CNV) induced by fast neutrons in a soybean mutant population. RESULTS: We called CNVs from GBS data in 79 soybean mutants and assessed the sensitivity and precision of this approach by validating our results against array comparative genomic hybridization (aCGH) data for 19 of these mutants as well as targeted PCR and ddPCR assays for a representative subset of the smallest events detected by GBS. Our GBS pipeline detected 55 of the 96 events found by aCGH, with approximate detection thresholds of 60 kb, 500 kb and 1 Mb for homozygous deletions, hemizygous deletions and duplications, respectively. Among the whole set of 79 mutants, the GBS data revealed 105 homozygous deletions, 32 hemizygous deletions and 19 duplications. This included several extremely large events, exhibiting maximum sizes of ~ 11.2 Mb for a homozygous deletion, ~ 11.6 Mb for a hemizygous deletion, and ~ 50 Mb for a duplication. CONCLUSIONS: This study provides a proof of concept that GBS can be used as an affordable high-throughput method for assessing CNVs in fast neutron mutants. The modularity of this GBS approach allows combining as many different libraries or sequencing runs as is necessary for reaching the goals of a particular study. This method should enable the low-cost genome-wide characterization of hundreds to thousands of individuals in fast neutron mutant populations or any population with large genomic deletions and duplications.


Assuntos
Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Nêutrons Rápidos , Técnicas de Genotipagem , Glycine max/genética , Mutação , Mutagênese
8.
BMC Genomics ; 19(1): 942, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558528

RESUMO

BACKGROUND: Norway spruce [Picea abies (L.) Karst.] is ecologically and economically one of the most important conifer worldwide. Our main goal was to develop a large catalog of annotated high confidence gene SNPs that should sustain the development of genomic tools for the conservation of natural and domesticated genetic diversity resources, and hasten tree breeding efforts in this species. RESULTS: Targeted sequencing was achieved by capturing P. abies exome with probes previously designed from the sequenced transcriptome of white spruce (Picea glauca (Moench) Voss). Capture efficiency was high (74.5%) given a high level of exome conservation between the two species. Using stringent criteria, we delimited a set of 61,771 high-confidence SNPs across 13,543 genes. To validate SNPs, a high-throughput genotyping array was developed for a subset of 5571 predicted SNPs representing as many different gene loci, and was used to genotype over 1000 trees. The estimated true positive rate of the resource was 84.2%, which was comparable with the genotyping success rate obtained for P. abies control SNPs recycled from previous genotyping efforts. We also analyzed SNP abundance across various gene functional categories. Several GO terms and gene families involved in stress response were found over-represented in highly polymorphic genes. CONCLUSION: The annotated high-confidence SNP catalog developed herein represents a valuable genomic resource, being representative of over 13 K genes distributed across the P. abies genome. This resource should serve a variety of population genomics and breeding applications in Norway spruce.


Assuntos
Exoma/genética , Picea/genética , Polimorfismo de Nucleotídeo Único , Mapeamento de Sequências Contíguas , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Genótipo , Anotação de Sequência Molecular , Folhas de Planta/genética , Análise de Sequência de DNA
9.
Theor Appl Genet ; 131(3): 499-511, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29352324

RESUMO

KEY MESSAGE: Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.


Assuntos
Produtos Agrícolas/genética , Técnicas de Genotipagem/métodos , Marcadores Genéticos , Genoma de Planta , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
BMC Genet ; 18(1): 32, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381212

RESUMO

BACKGROUND: Genotyping-by-sequencing (GBS) has emerged as a powerful and cost-effective approach for discovering and genotyping single-nucleotide polymorphisms. The GBS technique was largely used in crop species where its low sequence coverage is not a drawback for calling genotypes because inbred lines are almost homozygous. In contrast, only a few studies used the GBS technique in animal populations (with sizeable heterozygosity rates) and many of those that have been published did not consider the quality of the genotypes produced by the bioinformatic pipelines. To improve the sequence coverage of the fragments, an alternative GBS preparation protocol that includes selective primers during the PCR amplification step has been recently proposed. In this study, we compared this modified protocol with the conventional two-enzyme GBS protocol. We also described various procedures to maximize the selection of high quality genotypes and to increase the accuracy of imputation. RESULTS: The in silico digestions of the bovine genome showed that the combination of PstI and MspI is more suitable for sequencing bovine GBS libraries than the use of single digestions with PstI or ApeKI. The sequencing output of the GBS libraries generated a total of 123,666 variants with the selective-primer approach and 272,103 variants with the conventional approach. Validating our data with genotypes obtained from mass spectrometry and Illumina's bovine SNP50 array, we found that the genotypes produced by the conventional GBS method were concordant with those produced by these alternative genotyping methods, whereas the selective-primer method failed to call heterozygotes with confidence. Our results indicate that high accuracy in genotype calling (>97%) can be obtained using low read-depth thresholds (3 to 5 reads) provided that markers are simultaneously filtered for genotype quality scores. We also show that factors such as the minimum call rate and the minor allele frequency positively influence the accuracy of imputation of missing GBS data. The highest accuracies (around 85%) of imputed GBS markers were obtained with the FIMPUTE program when GBS and SNP50 array genotypes were combined (80,190 to 100,297 markers) before imputation. CONCLUSIONS: We discovered that the conventional two-enzyme GBS protocol could produce a large number of high-quality genotypes provided that appropriate filtration criteria were used. In contrast, the selective-primer approach resulted in a substantial proportion of miscalled genotypes and should be avoided for livestock genotyping studies. Overall, our study demonstrates that carefully adjusting the different filtering parameters applied to the GBS data is critical to maximize the selection of high quality genotypes and to increase the accuracy of imputation of missing data. The strategies and results presented here provide a framework to maximize the output of the GBS technique in animal populations and qualified the PstI/MspI GBS assay as a low-cost high-density genotyping platform. The conclusions reported here regarding read-depth and genotype quality filtering could benefit many GBS applications, notably genome-wide association studies, where there is a need to increase the density of markers genotyped across the target population while preserving the quality of genotypes.


Assuntos
Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Bovinos , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla , Genótipo , Técnicas de Genotipagem/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA/veterinária
11.
J Infect Dis ; 213(3): 395-402, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26268854

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa causes chronic lung infection in patients with cystic fibrosis. The Liverpool Epidemic Strain LESB58 is highly resistant to antibiotics, transmissible, and associated with increased morbidity and mortality. Its genome contains 6 prophages and 5 genomic islands. We constructed a polymerase chain reaction (PCR)-based signature-tagged mutagenesis library of 9216 LESB58 mutants and screened the mutants in a rat model of chronic lung infection. A total of 162 mutants were identified as defective for in vivo maintenance, with 11 signature-tagged mutagenesis mutants having insertions in prophage and genomic island genes. Many of these mutants showed both diminished virulence and reduced phage production. Transcription profiling by quantitative PCR and RNA-Seq suggested that disruption of these prophages had a widespread trans-acting effect on the transcriptome. This study demonstrates that temperate phages play a pivotal role in the establishment of infection through modulation of bacterial host gene expression.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Pneumopatias/microbiologia , Infecções por Pseudomonas/microbiologia , Fagos de Pseudomonas/fisiologia , Replicação Viral/fisiologia , Animais , Doença Crônica , Genes Bacterianos , Ilhas Genômicas , Mutação , Prófagos/genética , Prófagos/metabolismo , Ratos , Transcriptoma
12.
Plant J ; 83(2): 189-212, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26017574

RESUMO

White spruce (Picea glauca), a gymnosperm tree, has been established as one of the models for conifer genomics. We describe the draft genome assemblies of two white spruce genotypes, PG29 and WS77111, innovative tools for the assembly of very large genomes, and the conifer genomics resources developed in this process. The two white spruce genotypes originate from distant geographic regions of western (PG29) and eastern (WS77111) North America, and represent elite trees in two Canadian tree-breeding programs. We present an update (V3 and V4) for a previously reported PG29 V2 draft genome assembly and introduce a second white spruce genome assembly for genotype WS77111. Assemblies of the PG29 and WS77111 genomes confirm the reconstructed white spruce genome size in the 20 Gbp range, and show broad synteny. Using the PG29 V3 assembly and additional white spruce genomics and transcriptomics resources, we performed MAKER-P annotation and meticulous expert annotation of very large gene families of conifer defense metabolism, the terpene synthases and cytochrome P450s. We also comprehensively annotated the white spruce mevalonate, methylerythritol phosphate and phenylpropanoid pathways. These analyses highlighted the large extent of gene and pseudogene duplications in a conifer genome, in particular for genes of secondary (i.e. specialized) metabolism, and the potential for gain and loss of function for defense and adaptation.


Assuntos
Genoma de Planta , Família Multigênica , Fenóis/metabolismo , Picea/genética , Terpenos/metabolismo , Alquil e Aril Transferases/metabolismo , Biologia Computacional , Sistema Enzimático do Citocromo P-450/metabolismo , Transcriptoma
14.
J Virol ; 89(17): 8909-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085165

RESUMO

UNLABELLED: Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE: Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps. However, the identity of the ichnovirus ancestor is unknown, and questions remain regarding the possibility that the two described ichnovirus subgroups, banchine and campoplegine ichnoviruses, have distinct origins. Our study provides unequivocal evidence that these two ichnovirus types are derived from related viral progenitors. This suggests that morphological and genomic differences observed between the ichnovirus lineages, including features unique to banchine ichnovirus genome segments, result from evolutionary divergence either before or after their endogenization. Strikingly, analysis of selected wasp genomic regions revealed genes presumed to be part of the replicative machinery of the progenitor virus, shedding new light on the likely identity of this virus. Finally, these genes could well play a role in ichnovirus replication as they were overexpressed in the virogenic tissue.


Assuntos
DNA Viral/genética , Evolução Molecular , Polydnaviridae/classificação , Polydnaviridae/genética , Animais , Sequência de Bases , Evolução Biológica , Perfilação da Expressão Gênica , Genoma Viral , Genômica , Dados de Sequência Molecular , Polydnaviridae/enzimologia , Análise de Sequência de DNA , Proteínas Virais/genética , Vespas/virologia
15.
Theor Appl Genet ; 129(11): 2133-2149, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522358

RESUMO

KEY MESSAGE: Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.


Assuntos
Avena/genética , Cromossomos de Plantas/genética , Genoma de Planta , Coloração Cromossômica , DNA de Plantas/genética , Marcadores Genéticos , Técnicas de Genotipagem , Haplótipos , Poliploidia
16.
BMC Genomics ; 16: 1105, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714629

RESUMO

BACKGROUND: Pseudomonas aeruginosa establishes life-long chronic airway infections in cystic fibrosis (CF) patients. As the disease progresses, P. aeruginosa pathoadaptive variants are distinguished from the initially acquired strain. However, the genetic basis and the biology of host-bacteria interactions leading to a persistent lifestyle of P. aeruginosa are not understood. As a model system to study long term and persistent CF infections, the P. aeruginosa RP73, isolated 16.9 years after the onset of airways colonization from a CF patient, was investigated. Comparisons with strains RP1, isolated at the onset of the colonization, and clonal RP45, isolated 7 years before RP73 were carried out to better characterize genomic evolution of P. aeruginosa in the context of CF pathogenicity. RESULTS: Virulence assessments in disease animal model, genome sequencing and comparative genomics analysis were performed for clinical RP73, RP45, RP1 and prototype strains. In murine model, RP73 showed lower lethality and a remarkable capability of long-term persistence in chronic airways infection when compared to other strains. Pathological analysis of murine lungs confirmed advanced chronic pulmonary disease, inflammation and mucus secretory cells hyperplasia. Genomic analysis predicted twelve genomic islands in the RP73 genome, some of which distinguished RP73 from other prototype strains and corresponded to regions of genome plasticity. Further, comparative genomic analyses with sequential RP isolates showed signatures of pathoadaptive mutations in virulence factors potentially linked to the development of chronic infections in CF. CONCLUSIONS: The genome plasticity of P. aeruginosa particularly in the RP73 strain strongly indicated that these alterations may form the genetic basis defining host-bacteria interactions leading to a persistent lifestyle in human lungs.


Assuntos
Fibrose Cística/microbiologia , Genoma Bacteriano/genética , Pseudomonas aeruginosa/fisiologia , Animais , Modelos Animais de Doenças , Genômica , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/genética , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
17.
BMC Genomics ; 15: 235, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24670012

RESUMO

BACKGROUND: Camembert-type cheese ripening is driven mainly by fungal microflora including Geotrichum candidum and Penicillium camemberti. These species are major contributors to the texture and flavour of typical bloomy rind cheeses. Biochemical studies showed that G. candidum reduces bitterness, enhances sulphur flavors through amino acid catabolism and has an impact on rind texture, firmness and thickness, while P. camemberti is responsible for the white and bloomy aspect of the rind, and produces enzymes involved in proteolysis and lipolysis activities. However, very little is known about the genetic determinants that code for these activities and their expression profile over time during the ripening process. RESULTS: The metatranscriptome of an industrial Canadian Camembert-type cheese was studied at seven different sampling days over 77 days of ripening. A database called CamemBank01 was generated, containing a total of 1,060,019 sequence tags (reads) assembled in 7916 contigs. Sequence analysis revealed that 57% of the contigs could be affiliated to molds, 16% originated from yeasts, and 27% could not be identified. According to the functional annotation performed, the predominant processes during Camembert ripening include gene expression, energy-, carbohydrate-, organic acid-, lipid- and protein- metabolic processes, cell growth, and response to different stresses. Relative expression data showed that these functions occurred mostly in the first two weeks of the ripening period. CONCLUSIONS: These data provide further advances in our knowledge about the biological activities of the dominant ripening microflora of Camembert cheese and will help select biological markers to improve cheese quality assessment.


Assuntos
Queijo/microbiologia , Geotrichum/genética , Penicillium/genética , Mapeamento de Sequências Contíguas , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Geotrichum/isolamento & purificação , Penicillium/isolamento & purificação , Análise de Sequência de DNA , Enxofre/metabolismo , Transcriptoma
18.
Antimicrob Agents Chemother ; 58(12): 7367-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267667

RESUMO

The ubiquitous water-borne Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids in A. salmonicida subsp. salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other than A. salmonicida subsp. salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist in A. salmonicida subsp. salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed that A. salmonicida subsp. salmonicida harbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Doenças dos Peixes/epidemiologia , Infecções por Bactérias Gram-Negativas/veterinária , Plasmídeos/química , Salmão/microbiologia , Aeromonas salmonicida/efeitos dos fármacos , Aeromonas salmonicida/genética , Aeromonas salmonicida/isolamento & purificação , Animais , Antibacterianos/farmacologia , Sequência de Bases , Canadá/epidemiologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Doenças dos Peixes/transmissão , Furunculose/tratamento farmacológico , Furunculose/epidemiologia , Furunculose/microbiologia , Furunculose/transmissão , Transferência Genética Horizontal , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/transmissão , Dados de Sequência Molecular , Plasmídeos/classificação , Plasmídeos/metabolismo , Análise de Sequência de DNA , Tetraciclina/farmacologia
19.
BMC Plant Biol ; 14: 95, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24734980

RESUMO

BACKGROUND: A positive relationship between genome size and intron length is observed across eukaryotes including Angiosperms plants, indicating a co-evolution of genome size and gene structure. Conifers have very large genomes and longer introns on average than most plants, but impacts of their large genome and longer introns on gene structure has not be described. RESULTS: Gene structure was analyzed for 35 genes of Picea glauca obtained from BAC sequencing and genome assembly, including comparisons with A. thaliana, P. trichocarpa and Z. mays. We aimed to develop an understanding of impact of long introns on the structure of individual genes. The number and length of exons was well conserved among the species compared but on average, P. glauca introns were longer and genes had four times more intronic sequence than Arabidopsis, and 2 times more than poplar and maize. However, pairwise comparisons of individual genes gave variable results and not all contrasts were statistically significant. Genes generally accumulated one or a few longer introns in species with larger genomes but the position of long introns was variable between plant lineages. In P. glauca, highly expressed genes generally had more intronic sequence than tissue preferential genes. Comparisons with the Pinus taeda BACs and genome scaffolds showed a high conservation for position of long introns and for sequence of short introns. A survey of 1836 P. glauca genes obtained by sequence capture mostly containing introns <1 Kbp showed that repeated sequences were 10× more abundant in introns than in exons. CONCLUSION: Conifers have large amounts of intronic sequence per gene for seed plants due to the presence of few long introns and repetitive element sequences are ubiquitous in their introns. Results indicate a complex landscape of intron sizes and distribution across taxa and between genes with different expression profiles.


Assuntos
Genes de Plantas , Íntrons/genética , Picea/genética , Sequência de Bases , Bases de Dados Genéticas , Evolução Molecular , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Tamanho do Genoma , Pinus/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA