RESUMO
Immunotherapy response is associated with the presence of conventional dendritic cells (cDCs). cDC type 1 (cDC1) is critically important for CD8+ T cell activation, cDC type 2 (cDC2) regulates CD4+ T cell responses, and mature regulatory cDCs may dampen T cell responses in the tumor microenvironment (TME). However, we lack a clear understanding of cDC distribution in the human TME, cDC prevalence in metastatic sites, and cDC differences in early- versus late-stage disease. Rapid autopsy specimens of 10 patients with lung adenocarcinoma were evaluated to detect cDCs and immune cells via multiplex immunofluorescence using 18 markers and 42 tumors. First, we found that T cells, cDC1, and cDC2 were confined to stroma, whereas mature regulatory DCs were enriched in tumor, suggesting unique localization-specific functions. Second, lung and lymph node tumors were more enriched in T cells and cDCs than liver tumors, underscoring differences in the TME of metastatic sites. Third, although the proportion of T cells and cDC1 did not differ in different stages, an increase in the proportion of cDC2 and macrophages in late stage suggests potential differences in regulation of T cell responses in different stages. Collectively, these findings provide new, to our knowledge, insights into cDC biology in human cancer that may have important therapeutic implications.
Assuntos
Adenocarcinoma de Pulmão , Autopsia , Células Dendríticas , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Microambiente Tumoral/imunologia , Masculino , Feminino , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Pessoa de Meia-Idade , Idoso , Linfócitos T CD8-Positivos/imunologiaRESUMO
SCA6 patients with the same size CAG repeat allele can vary significantly in age at onset (AAO) and clinical progression. The specific external factors affecting SCA6 have yet to be investigated. We assessed the effect of early life events on AAO, severity, and progression in SCA6 patients using a social determinant of health approach. We performed a survey of biological and social factors in SCA6 patients enrolled in the SCA6 Network at the University of Chicago. AAO of ataxia symptoms and patient-reported outcome measure (PROM) of ataxia were used as primary outcome measures. Least absolute shrinkage and selection operation (LASSO) regressions were used to identify which early life factors are predictive of SCA6 AAO, severity, and progression. Multiple linear regression models were then used to assess the degree to which these determinants influence SCA6 health outcomes. A total of 105 participants with genetically confirmed SCA6 completed the assessments. SCA6 participants with maternal difficulty during pregnancy, active participation in school sports, and/or longer CAG repeats were determined to have earlier AAO. We found a 13.44-year earlier AAO for those with maternal difficulty in pregnancy than those without (p = 0.008) and a 12.31-year earlier AAO for those active in school sports than those who were not (p < 0.001). Higher education attainment was associated with decreased SCA6 severity and slower progression. Early life biological and social factors can have a strong influence on the SCA6 disease course, indicating that non-genetic factors can contribute significantly to SCA6 health outcomes.
Assuntos
Idade de Início , Progressão da Doença , Ataxias Espinocerebelares , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/epidemiologia , Índice de Gravidade de Doença , Determinantes Sociais da Saúde , Adulto JovemRESUMO
Liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) has widespread clinical use for detection of inborn errors of metabolism, therapeutic drug monitoring, and numerous other applications. This technique detects proteolytic peptides as surrogates for protein biomarker expression, mutation, and post-translational modification in individual clinical assays and in cancer research with highly multiplexed quantitation across biological pathways. LC-MRM for protein biomarkers must be translated from multiplexed research-grade panels to clinical use. LC-MRM panels provide the capability to quantify clinical biomarkers and emerging protein markers to establish the context of tumor phenotypes that provide highly relevant supporting information. An application to visualize and communicate targeted proteomics data will empower translational researchers to move protein biomarker panels from discovery to clinical use. Therefore, we have developed a web-based tool for targeted proteomics that provides pathway-level evaluations of key biological drivers (e.g., EGFR signaling), signature scores (representing phenotypes) (e.g., EMT), and the ability to quantify specific drug targets across a sample cohort. This tool represents a framework for integrating summary information, decision algorithms, and risk scores to support Physician-Interpretable Phenotypic Evaluation in R (PIPER) that can be reused or repurposed by other labs to communicate and interpret their own biomarker panels.
Assuntos
Proteínas , Pesquisa Translacional Biomédica , Proteínas/análise , Peptídeos/metabolismo , Biomarcadores/análise , FenótipoRESUMO
DNA is the sequence that codes for proteins. Messenger RNA is transcribed from the DNA sequence of genes and translated into protein. It can be difficult to predict how a change in the DNA sequence will affect messenger RNA and protein quantity and quality. DNA translocation changes can cause the joining of sequences from two different genes or different parts of the same gene. DNA sequencing is often used clinically to predict how DNA changes might affect proteins. Alternatively, RNA sequencing can be used as a more direct measure of the effect of DNA changes on the protein products. This sequencing is important for identifying changes in cancer that may indicate response to targeted therapy, prognosis, or diagnosis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , DNA/genética , RNA Mensageiro/genética , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala , RNA/genéticaRESUMO
Targeted drugs are effective when they directly inhibit strong disease drivers, but only a small fraction of diseases feature defined actionable drivers. Alternatively, network-based approaches can uncover new therapeutic opportunities. Applying an integrated phenotypic screening, chemical and phosphoproteomics strategy, here we describe the anaplastic lymphoma kinase (ALK) inhibitor ceritinib as having activity across several ALK-negative lung cancer cell lines and identify new targets and network-wide signaling effects. Combining pharmacological inhibitors and RNA interference revealed a polypharmacology mechanism involving the noncanonical targets IGF1R, FAK1, RSK1 and RSK2. Mutating the downstream signaling hub YB1 protected cells from ceritinib. Consistent with YB1 signaling being known to cause taxol resistance, combination of ceritinib with paclitaxel displayed strong synergy, particularly in cells expressing high FAK autophosphorylation, which we show to be prevalent in lung cancer. Together, we present a systems chemical biology platform for elucidating multikinase inhibitor polypharmacology mechanisms, subsequent design of synergistic drug combinations, and identification of mechanistic biomarker candidates.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Polifarmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Pirimidinas/farmacologia , Sulfonas/farmacologia , Quinase do Linfoma Anaplásico , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Microtúbulos/efeitos dos fármacos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Interferência de RNA , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Sulfonas/químicaRESUMO
The GM.CD40L vaccine, which recruits and activates dendritic cells, migrates to lymph nodes, activating T cells and leading to systemic tumor cell killing. When combined with the CCL21 chemokine, which recruits T cells and enhances T-cell responses, additive effects have been demonstrated in non-small cell lung cancer mouse models. Here, we compared GM.CD40L versus GM.CD40L plus CCL21 (GM.CD40L.CCL21) in lung adenocarcinoma patients with ≥ 1 line of treatment. In this phase I/II randomized trial (NCT01433172), patients received intradermal vaccines every 14 days (3 doses) and then monthly (3 doses). A two-stage minimax design was used. During phase I, no dose-limiting toxicities were shown in three patients who received GM.CD40L.CCL21. During phase II, of evaluable patients, 5/33 patients (15.2%) randomized for GM.DCD40L (p = .023) and 3/32 patients (9.4%) randomized for GM.DCD40L.CCL21 (p = .20) showed 6-month progression-free survival. Median overall survival was 9.3 versus 9.5 months with GM.DCD40L versus GM.DCD40L.CCL21 (95% CI 0.70-2.25; p = .44). For GM.CD40L versus GM.CD40L.CCL21, the most common treatment-related adverse events (TRAEs) were grade 1/2 injection site reaction (51.4% versus 61.1%) and grade 1/2 fatigue (35.1% versus 47.2%). Grade 1 immune-mediated TRAEs were isolated to skin. No patients showed evidence of pseudo-progression or immune-related TRAEs of grade 1 or greater of pneumonitis, endocrinopathy, or colitis, and none discontinued treatment due to toxicity. Although we found no significant associations between vaccine immunogenicity and outcomes, in limited biopsies, one patient treated with GMCD40L.CCL21 displayed abundant tumor-infiltrating lymphocytes. This possible effectiveness warrants further investigation of GM.CD40L in combination approaches.
Assuntos
Adenocarcinoma/terapia , Ligante de CD40/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiocina CCL21/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Imunoterapia , Adenocarcinoma/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de SobrevidaRESUMO
BACKGROUND: Hepatocyte growth factor (HGF)-mediated mesenchymal-to-epithelial transition factor (MET) gene amplification is a common mechanism for acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). MET gene amplification has also been associated with hepatic metastases in patients with lung cancer. The aim of this study was to investigate whether hepatic metastases are associated with decreased efficacy of erlotinib in patients with adenocarcinoma. MATERIAL/METHODS: A cohort of 329 patients with stage IV lung adenocarcinoma, known EGFR mutation status, and who received treatment with erlotinib in the 2nd or 3rd line setting were enrolled into this study over a period of 4 years between January 2011 and January 2015. The cohort was stratified based on the presence or absence of hepatic metastases and the efficacy of erlotinib was defined based on disease control rate (DCR) and progression-free survival (PFS). RESULTS: Hepatic metastases were present in 220 of the 329 enrolled lung adenocarcinoma patients. EGFR-activating mutations (exon 19 deletion or an exon 21 L858R mutation) were identified in 113 (34.3%) patients. The DCR was significantly lower in the hepatic metastases group than in patients without hepatic metastases (39.5% vs. 51.4% P=0.045). In patients with hepatic metastases, median PFS was 2.3 months in the EGFR mutation-positive group versus 1.4 months in the EGFR mutation-negative group (95% CI 1.3-3.3 vs. 1.3-1.5; P=0.055). Of note, erlotinib therapy in patients with hepatic metastases was complicated by elevated alanine transaminase (ALT) levels. CONCLUSIONS: Hepatic metastasis in patients with lung adenocarcinoma predicts poor response to erlotinib as a 2nd/3rd line therapy. Combination therapy, for example with MET-TKI, may be a good choice for patients with liver metastases with poor prognosis.
Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Idoso , Intervalo Livre de Doença , Receptores ErbB/genética , Cloridrato de Erlotinib/efeitos adversos , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , Mutação/genética , Resultado do TratamentoRESUMO
BACKGROUND: The U.S. Food and Drug Administration-approved method for detecting EML4-ALK rearrangement is fluorescence in situ hybridization (FISH); however, data supporting the use of immunohistochemistry (IHC) for that purpose are accumulating. Previous studies that compared FISH and IHC considered FISH the gold standard, but none compared data with the results of next-generation sequencing (NGS) analysis. MATERIALS AND METHODS: We studied FISH and IHC (D5F3 antibody) systematically for EML4-ALK rearrangement in 51 lung adenocarcinoma patients, followed by NGS in case of discordance. RESULTS: Of 51 patients, 4 were positive with FISH (7.8%), and 8 were positive with IHC (15.7%). Three were positive with both. NGS confirmed that four of the five patients who were positive with IHC and negative with FISH were positive for ALK. Two were treated by crizotinib, with progression-free survival of 18 and 6 months. Considering NGS as the most accurate test, the sensitivity and specificity were 42.9% and 97.7%, respectively, for FISH and 100% and 97.7%, respectively, for IHC. CONCLUSION: The FISH-based method of detecting EML4-ALK rearrangement in lung cancer may miss a significant number of patients who could benefit from targeted ALK therapy. Screening for EML4-ALK rearrangement by IHC should be strongly considered, and NGS is recommended in borderline cases. Two patients who were negative with FISH and positive with IHC were treated with crizotinib and responded to therapy.
Assuntos
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Rearranjo Gênico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Programas de Rastreamento/métodos , Proteínas de Fusão Oncogênica/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade , Taxa de SobrevidaRESUMO
Introduction: Medullary thyroid carcinoma (MTC) is an aggressive cancer that is often caused by driver mutations in RET. Splice site variants (SSV) reflect changes in mRNA processing, which may alter protein function. RET SSVs have been described in thyroid tumors in general but have not been extensively studied in MTC. Methods: The prevalence of RET SSVs was evaluated in 3,624 cases with next generation sequence reports, including 25 MTCs. Fisher exact analysis was performed to compare RET SSV frequency in cancers with/without a diagnosis of MTC. Results: All 25 MTCs had at least one of the two most common RET SSVs versus 0.3% of 3,599 cancers with other diagnoses (p < 0.00001). The 11 cancers with non-MTC diagnoses that had the common RET SSVs were 4 neuroendocrine cancers, 4 non-small cell lung carcinomas, 2 non-MTC thyroid cancers, and 1 melanoma. All 25 MTCs analyzed had at least one of the two most common RET SSVs, including 4 with no identified mutational driver. Discussion: The identification of RET SSVs in all MTCs, but rarely in other cancer types, demonstrates that these RET SSVs distinguish MTCs from other cancer types. Future studies are needed to investigate whether these RET SSVs play a pathogenic role in MTC.
RESUMO
BACKGROUND: Metastatic carcinoma of unknown primary origin to the head and neck lymph nodes (HNCUP) engenders unique diagnostic considerations. In many cases, the detection of a high-risk human papillomavirus (HR-HPV) unearths an occult oropharyngeal squamous cell carcinoma (SCC). In metastatic HR-HPV-independent carcinomas, other primary sites should be considered, including cutaneous malignancies that can mimic HR-HPV-associated SCC. In this context, ultraviolet (UV) signature mutations, defined as ≥ 60% CâT substitutions with ≥ 5% CCâTT substitutions at dipyrimidine sites, identified in tumors arising on sun exposed areas, are an attractive and underused tool in the setting of metastatic HNCUP. METHODS: A retrospective review of institutional records focused on cases of HR-HPV negative HNCUP was conducted. All cases were subjected to next generation sequencing analysis to assess UV signature mutations. RESULTS: We identified 14 HR-HPV negative metastatic HNCUP to either the cervical or parotid gland lymph nodes, of which, 11 (11/14, 79%) had UV signature mutations, including 4 (4/10, 40%) p16 positive cases. All UV signature mutation positive cases had at least one significant TP53 mutation and greater than 20 unique gene mutations. CONCLUSION: The management of metastatic cutaneous carcinomas significantly differs from other HNCUP especially metastatic HR-HPV-associated SCC; therefore, the observation of a high percentage of CâT with CC âTT substitutions should be routinely incorporated in next generation sequencing reports of HNCUP. UV mutational signatures testing is a robust diagnostic tool that can be utilized in daily clinical practice.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Primárias Desconhecidas , Infecções por Papillomavirus , Neoplasias Cutâneas , Humanos , Neoplasias Primárias Desconhecidas/diagnóstico , Neoplasias Primárias Desconhecidas/genética , Neoplasias Primárias Desconhecidas/patologia , Infecções por Papillomavirus/diagnóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Mutação , Papillomaviridae/genéticaRESUMO
Introduction: The translation of gene expression profiles of SCLC to clinical testing remains relatively unexplored. In this study, gene expression variations in SCLC were evaluated to identify potential biomarkers. Methods: RNA expression profiling was performed on 44 tumor samples from 35 patients diagnosed with SCLC using the clinically validated RNA Salah Targeted Expression Panel (RNA STEP). RNA sequencing (RNA-Seq) and immunohistochemistry were performed on two different SCLC cohorts, and correlation analyses were performed for the ASCL1, NEUROD1, POU2F3, and YAP1 genes and their corresponding proteins. RNA STEP and RNA-Seq results were evaluated for gene expression profiles and heterogeneity between SCLC primary and metastatic sites. RNA STEP gene expression profiles of independent SCLC samples (n = 35) were compared with lung adenocarcinoma (n = 160) and squamous cell carcinoma results (n = 25). Results: The RNA STEP results were highly correlated with RNA-Seq and immunohistochemistry results. The dominant transcription regulator by RNA STEP was ASCL1 in 74.2% of the samples, NEUROD1 in 20%, and POU2F3 in 2.9%. The ASCL1, NEUROD1, and POU2F3 gene expression profiles were heterogeneous between primary and metastatic sites. SCLCs displayed markedly high expression for targetable genes DLL3, EZH2, TERT, and RET. SCLCs were found to have relatively colder immune profiles than lung adenocarcinomas and squamous cell carcinomas, characterized by lower expression of HLA genes, immune cell, and immune checkpoint genes, except the LAG3 gene. Conclusions: Clinical-grade SCLC RNA expression profiling has value for SCLC subtyping, design of clinical trials, and identification of patients for trials and potential targeted therapy.
RESUMO
This study describes the validation of a clinical RNA expression panel with evaluation of concordance between gene copy gain by a next-generation sequencing (NGS) assay and high gene expression by an RNA expression panel. The RNA Salah Targeted Expression Panel (RNA STEP) was designed with input from oncologists to include 204 genes with utility for clinical trial prescreening and therapy selection. RNA STEP was validated with the nanoString platform using remnant formalin-fixed, paraffin-embedded-derived RNA from 102 patients previously tested with a validated clinical NGS panel. The repeatability, reproducibility, and concordance of RNA STEP results with NGS results were evaluated. RNA STEP demonstrated high repeatability and reproducibility, with excellent correlation (r > 0.97, P < 0.0001) for all comparisons. Comparison of RNA STEP high gene expression (log2 ratio ≥ 2) versus NGS DNA-based gene copy number gain (copies ≥ 5) for 38 mutually covered genes revealed an accuracy of 93.0% with a positive percentage agreement of 69.4% and negative percentage agreement of 93.8%. Moderate correlation was observed between platforms (r = 0.53, P < 0.0001). Concordance between high gene expression and gene copy number gain varied by specific gene, and some genes had higher accuracy between assays. Clinical implementation of RNA STEP provides gene expression data complementary to NGS and offers a tool for prescreening patients for clinical trials.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reprodutibilidade dos Testes , Neoplasias/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Dosagem de GenesRESUMO
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Assuntos
Formaldeído , Inclusão em Parafina , Proteômica , Fixação de Tecidos , Proteômica/métodos , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Formaldeído/química , Animais , Camundongos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Microdissecção e Captura a Laser/métodos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismoRESUMO
BACKGROUND: Inflammatory bowel diseases, encompassing Crohn's disease and ulcerative colitis, are characterised by persistent leucocyte tissue infiltration leading to perpetuation of an inappropriate inflammatory cascade. The neuronal guidance molecule netrin-1 has recently been implicated in the orchestration of leucocyte trafficking during acute inflammation. We therefore hypothesised that netrin-1 could modulate leucocyte infiltration and disease activity in a model of inflammatory bowel disease. DESIGN: DSS-colitis was performed in mice with partial genetic netrin-1 deficiency (Ntn-1(+/-) mice) or wild-type mice treated with exogenous netrin-1 via osmotic pump to examine the role of endogenous and therapeutically administered netrin-1. These studies were supported by in vitro models of transepithelial migration and intestinal epithelial barrier function. RESULTS: Consistent with our hypothesis, we observed induction of netrin-1 during intestinal inflammation in vitro or in mice exposed to experimental colitis. Moreover, mice with partial netrin-1 deficiency demonstrated an exacerbated course of DSS-colitis compared to littermate controls, with enhanced weight loss and colonic shortening. Conversely, mice treated with exogenous mouse netrin-1 experienced attenuated disease severity. Importantly, permeability studies and quantitative assessment of apoptosis reveal that netrin-1 signalling events do not alter mucosal permeability or intestinal epithelial cell apoptosis. In vivo studies of leucocyte transmigration demonstrate suppression of neutrophil trafficking as a key function mediated by endogenous or exogenously administered netrin-1. Finally, genetic studies implicate the A2B adenosine receptor in netrin-1-mediated protection during DSS-colitis. CONCLUSIONS: The present study identifies a previously unrecognised role for netrin-1 in attenuating experimental colitis through limitation of neutrophil trafficking.
Assuntos
Colite/metabolismo , Mucosa Intestinal/metabolismo , Fatores de Crescimento Neural/metabolismo , Infiltração de Neutrófilos , Proteínas Supressoras de Tumor/metabolismo , Doença Aguda , Animais , Biomarcadores/metabolismo , Linhagem Celular , Colite/imunologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/administração & dosagem , Netrina-1 , Permeabilidade , Migração Transendotelial e Transepitelial , Proteínas Supressoras de Tumor/administração & dosagemRESUMO
Loss of expression of paternally imprinted genes in the 15q11.2-q13 chromosomal region leads to the neurodevelopmental disorder Prader-Willi Syndrome (PWS). The PWS critical region contains four paternally expressed protein-coding genes along with small nucleolar RNA (snoRNA) genes under the control of the SNURF-SNRPN promoter, including the SNORD116 snoRNA gene cluster that is implicated in the PWS disease etiology. A 5-7 Mb deletion, maternal uniparental disomy, or an imprinting defect of chromosome 15q affect multiple genes in the PWS critical region, causing PWS. However, the individual contributions of these genes to the PWS phenotype remain elusive. Reports of smaller, atypical deletions may refine the boundaries of the PWS critical region or suggest additional disease-causing mechanisms. We describe an adult female with a classic PWS phenotype due to a 78 kb microdeletion that includes only exons 2 and 3 of SNURF-SNRPN with apparently preserved expression of SNORD116.
RESUMO
BACKGROUND: Activating mutations in EGFR or KRAS are highly prevalent in NSCLC, share activation of the MAPK pathway and may be amenable to combination therapy to prevent negative feedback activation. METHODS: In this phase 1/1B trial, we tested the combination of binimetinib and erlotinib in patients with advanced NSCLC with at least 1 prior line of treatment (unless with activating EGFR mutation which could be treatment-naïve). A subsequent phase 1B expansion accrued patients with either EGFR- or KRAS-mutation using the recommended phase 2 dose (RP2D) from Phase 1. The primary objective was to evaluate the safety of binimetinib plus erlotinib and establish the RP2D. RESULTS: 43 patients enrolled (dose-escalation = 23; expansion = 20). 17 harbored EGFR mutation and 22 had KRAS mutation. The RP2D was erlotinib 100 mg daily and binimetinib 15 mg BID × 5 days/week. Common AEs across all doses included diarrhea (69.8%), rash (44.2%), fatigue (32.6%), and nausea (32.6%), and were primarily grade 1/2. Among KRAS mutant patients, 1 (5%) had confirmed partial response and 8 (36%) achieved stable disease as best overall response. Among EGFR mutant patients, 9 were TKI-naïve with 8 (89%) having partial response, and 8 were TKI-pretreated with no partial responses and 1 (13%) stable disease as best overall response. CONCLUSIONS: Binimetinib plus erlotinib demonstrated a manageable safety profile and modest efficacy including one confirmed objective response in a KRAS mutant patient. While clinical utility of this specific combination was limited, these results support development of combinations using novel small molecule inhibitors of RAS, selective EGFR- and other MAPK pathway inhibitors, many of which have improved therapeutic indices. CLINICAL TRIAL REGISTRATION: NCT01859026.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
Preclinical genetically engineered mouse models (GEMMs) of lung adenocarcinoma are invaluable for investigating molecular drivers of tumor formation, progression, and therapeutic resistance. However, histological analysis of these GEMMs requires significant time and training to ensure accuracy and consistency. To achieve a more objective and standardized analysis, we used machine learning to create GLASS-AI, a histological image analysis tool that the broader cancer research community can utilize to grade, segment, and analyze tumors in preclinical models of lung adenocarcinoma. GLASS-AI demonstrates strong agreement with expert human raters while uncovering a significant degree of unreported intratumor heterogeneity. Integrating immunohistochemical staining with high-resolution grade analysis by GLASS-AI identified dysregulation of Mapk/Erk signaling in high-grade lung adenocarcinomas and locally advanced tumor regions. Our work demonstrates the benefit of employing GLASS-AI in preclinical lung adenocarcinoma models and the power of integrating machine learning and molecular biology techniques for studying the molecular pathways that underlie cancer progression.
RESUMO
Oncolytic virus therapies induce the direct killing of tumor cells and activation of conventional dendritic cells (cDC); however, cDC activation has not been optimized with current therapies. We evaluated the adenoviral delivery of engineered membrane-stable CD40L (MEM40) and IFNß to locally activate cDCs in mouse tumor models. Combined tumor MEM40 and IFNß expression induced the highest cDC activation coupled with increased lymph node migration, increased systemic antitumor CD8+ T-cell responses, and regression of established tumors in a cDC1-dependent manner. MEM40 + IFNß combined with checkpoint inhibitors led to effective control of distant tumors and lung metastases. An oncolytic adenovirus (MEM-288) expressing MEM40 + IFNß in phase I clinical testing induced cancer cell loss concomitant with enhanced T-cell infiltration and increased systemic presence of tumor T-cell clonotypes in non-small cell lung cancer (NSCLC) patients. This approach to simultaneously target two major DC-activating pathways has the potential to significantly affect the solid tumor immunotherapy landscape.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Ligante de CD40 , Linfócitos T CD8-Positivos , Células Dendríticas , Imunoterapia , Linhagem Celular TumoralRESUMO
BACKGROUND: Historically, extended haplotypes have been defined using only a few data points, such as alleles for several HLA genes in the MHC. High-density SNP data, and the increasing affordability of whole genome SNP typing, creates the opportunity to define higher resolution extended haplotypes. This drives the need for new tools that support quantification and visualization of extended haplotypes as defined by as many as 2000 SNPs. Confronted with high-density SNP data across the major histocompatibility complex (MHC) for 2,300 complete families, compiled by the Type 1 Diabetes Genetics Consortium (T1DGC), we developed software for studying extended haplotypes. METHODS: The software, called ExHap (Extended Haplotype), uses a similarity measurement we term congruence to identify and quantify long-range allele identity. Using ExHap, we analyzed congruence in both the T1DGC data and family-phased data from the International HapMap Project. RESULTS: Congruent chromosomes from the T1DGC data have between 96.5% and 99.9% allele identity over 1,818 SNPs spanning 2.64 megabases of the MHC (HLA-DRB1 to HLA-A). Thirty-three of 132 DQ-DR-B-A defined haplotype groups have > 50% congruent chromosomes in this region. For example, 92% of chromosomes within the DR3-B8-A1 haplotype are congruent from HLA-DRB1 to HLA-A (99.8% allele identity). We also applied ExHap to all 22 autosomes for both CEU and YRI cohorts from the International HapMap Project, identifying multiple candidate extended haplotypes. CONCLUSIONS: Long-range congruence is not unique to the MHC region. Patterns of allele identity on phased chromosomes provide a simple, straightforward approach to visually and quantitatively inspect complex long-range structural patterns in the genome. Such patterns aid the biologist in appreciating genetic similarities and differences across cohorts, and can lead to hypothesis generation for subsequent studies.
Assuntos
Alelos , Genoma Humano/genética , Técnicas de Genotipagem/métodos , Haplótipos/genética , Algoritmos , Cromossomos Humanos/genética , Diabetes Mellitus Tipo 1/genética , Estudos de Associação Genética , Projeto HapMap , Humanos , Complexo Principal de Histocompatibilidade/genética , Recombinação Genética/genética , SoftwareRESUMO
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.