Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Immunol ; 209(3): 465-475, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35725270

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by T and B cell responses to proteins expressed by insulin-producing pancreatic ß cells, inflammatory lesions within islets (insulitis), and ß cell loss. We previously showed that Ag-specific tolerance targeting single ß cell protein epitopes is effective in preventing T1D induced by transfer of monospecific diabetogenic CD4 and CD8 transgenic T cells to NOD.scid mice. However, tolerance induction to individual diabetogenic proteins, for example, GAD65 (glutamic acid decarboxylase 65) or insulin, has failed to ameliorate T1D both in wild-type NOD mice and in the clinic. Initiation and progression of T1D is likely due to activation of T cells specific for multiple diabetogenic epitopes. To test this hypothesis, recombinant insulin, GAD65, and chromogranin A proteins were encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (COUR CNPs) to assess regulatory T cell induction, inhibition of Ag-specific T cell responses, and blockade of T1D induction/progression in NOD mice. Whereas treatment of NOD mice with CNPs containing a single protein inhibited the corresponding Ag-specific T cell response, inhibition of overt T1D development only occurred when all three diabetogenic proteins were included within the CNPs (CNP-T1D). Blockade of T1D following CNP-T1D tolerization was characterized by regulatory T cell induction and a significant decrease in both peri-insulitis and immune cell infiltration into pancreatic islets. As we have recently published that CNP treatment is both safe and induced Ag-specific tolerance in a phase 1/2a celiac disease clinical trial, Ag-specific tolerance induced by nanoparticles encapsulating multiple diabetogenic proteins is a promising approach to T1D treatment.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Nanopartículas , Animais , Diabetes Mellitus Experimental/patologia , Epitopos , Insulina , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas
2.
Gastroenterology ; 161(1): 66-80.e8, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33722583

RESUMO

BACKGROUND & AIMS: In celiac disease (CeD), gluten induces immune activation, leading to enteropathy. TAK-101, gluten protein (gliadin) encapsulated in negatively charged poly(dl-lactide-co-glycolic acid) nanoparticles, is designed to induce gluten-specific tolerance. METHODS: TAK-101 was evaluated in phase 1 dose escalation safety and phase 2a double-blind, randomized, placebo-controlled studies. Primary endpoints included pharmacokinetics, safety, and tolerability of TAK-101 (phase 1) and change from baseline in circulating gliadin-specific interferon-γ-producing cells at day 6 of gluten challenge, in patients with CeD (phase 2a). Secondary endpoints in the phase 2a study included changes from baseline in enteropathy (villus height to crypt depth ratio [Vh:Cd]), and frequency of intestinal intraepithelial lymphocytes and peripheral gut-homing T cells. RESULTS: In phase 2a, 33 randomized patients completed the 14-day gluten challenge. TAK-101 induced an 88% reduction in change from baseline in interferon-γ spot-forming units vs placebo (2.01 vs 17.58, P = .006). Vh:Cd deteriorated in the placebo group (-0.63, P = .002), but not in the TAK-101 group (-0.18, P = .110), although the intergroup change from baseline was not significant (P = .08). Intraepithelial lymphocyte numbers remained equal. TAK-101 reduced changes in circulating α4ß7+CD4+ (0.26 vs 1.05, P = .032), αEß7+CD8+ (0.69 vs 3.64, P = .003), and γδ (0.15 vs 1.59, P = .010) effector memory T cells. TAK-101 (up to 8 mg/kg) induced no clinically meaningful changes in vital signs or routine clinical laboratory evaluations. No serious adverse events occurred. CONCLUSIONS: TAK-101 was well tolerated and prevented gluten-induced immune activation in CeD. The findings from the present clinical trial suggest that antigen-specific tolerance was induced and represent a novel approach translatable to other immune-mediated diseases. ClinicalTrials.gov identifiers: NCT03486990 and NCT03738475.


Assuntos
Doença Celíaca/imunologia , Gliadina/imunologia , Tolerância Imunológica/imunologia , Nanopartículas/administração & dosagem , Doença Celíaca/patologia , Método Duplo-Cego , Gliadina/administração & dosagem , Glicolatos/administração & dosagem , Humanos , Infusões Intravenosas
3.
Expert Rev Proteomics ; 15(5): 431-449, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29694790

RESUMO

INTRODUCTION: Mass spectrometry (MS) is widely used in the characterization of biomolecules including peptide and protein therapeutics. These biotechnology products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Advances in MS instrumentation and techniques have enhanced protein characterization capabilities and supported an increased development of biopharmaceutical products. Areas covered: This review describes recent developments in MS-based biotherapeutic analysis including sequence determination, post-translational modifications (PTMs) and higher order structure (HOS) analysis along with improvements in ionization and dissociation methods. An outlook of emerging applications of MS in the lifecycle of product development such as comparability, biosimilarity and quality control practices is also presented. Expert commentary: MS-based methods have established their utility in the analysis of new biotechnology products and their lifecycle appropriate implementation. In the future, MS will likely continue to grow as one of the leading protein identification and characterization techniques in the biopharmaceutical industry landscape.


Assuntos
Produtos Biológicos/farmacologia , Espectrometria de Massas/métodos , Animais , Biotecnologia , Fatores Celulares Derivados do Hospedeiro/metabolismo , Humanos , Mapeamento de Peptídeos , Polissacarídeos/análise
4.
Xenobiotica ; 47(5): 431-438, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27321253

RESUMO

1. Topical anesthesia with benzocaine or lidocaine occasionally causes methemoglobinemia, an uncommon but potentially fatal disorder where the blood has a reduced ability to transport oxygen. Previous in vitro studies using human whole blood have shown that benzocaine causes more methemoglobin (MetHb) formation than lidocaine, and that both compounds require metabolic transformation to form the MetHb producing species. In the current investigation, the active species of benzocaine forming the MetHb was investigated. 2. HPLC analysis of benzocaine samples incubated with human hepatic S9 showed the formation of a peak with the same UV spectrum and retention time as benzocaine hydroxylamine (BenzNOH). To confirm the activity of BenzNOH, MetHb production following exposure to the compound was determined in whole human blood using an Avoximeter 4000 CO-oximeter. 3. BenzNOH produced MetHb in a concentration dependent manner without the need for metabolic activation. Benzocaine in the presence of metabolic activation required a concentration of 500 µM to produce a similar degree of MetHb formation as 20 µM BenzNOH without activation. Previous work suggested that two metabolites of lidocaine may also form MetHb; N-hydroxyxylidine and 4-hydroxyxylidine. Of these two metabolites 4-hydroxyxylidine produced the most MetHb in whole blood in vitro in the absence of metabolic activation, however BenzNOH produced up to 14.2 times more MetHb than 4-hydroxyxylidine at a similar concentration. 4. These results suggest that the ability of benzocaine to form MetHb is likely to be mediated through its hydroxylamine metabolite and that this metabolite is inherently more active than the potentially MetHb-forming metabolites of lidocaine.


Assuntos
Benzocaína/metabolismo , Lidocaína/metabolismo , Metemoglobina/metabolismo , Acetaminofen/análogos & derivados , Anestésicos Locais/metabolismo , Humanos , Metemoglobinemia
5.
Mol Cell Proteomics ; 13(3): 907-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24443746

RESUMO

Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this "fit-for-purpose" approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and recommendations.


Assuntos
Bioensaio/métodos , Biologia , Espectrometria de Massas/métodos , Medicina , Peptídeos/metabolismo , Animais , Guias como Assunto , Humanos , Marcação por Isótopo , Proteômica/normas , Padrões de Referência , Software
6.
Antimicrob Agents Chemother ; 59(1): 622-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385113

RESUMO

A recent report found that generic parenteral vancomycin products may not have in vivo efficacies equivalent to those of the innovator in a neutropenic murine thigh infection model despite having similar in vitro microbiological activities and murine serum pharmacokinetics. We compared the in vitro and in vivo activities of six of the parenteral vancomycin products available in the United States. The in vitro assessments for the potencies of the vancomycin products included MIC/minimal bactericidal concentration (MBC) determinations, quantifying the impact of human and murine serum on the MIC values, and time-kill studies. Also, the potencies of the vancomycin products were quantified with a biological assay, and the human and mouse serum protein binding rates for the vancomycin products were measured. The in vivo studies included dose-ranging experiments with the 6 vancomycin products for three isolates of Staphylococcus aureus in a neutropenic mouse thigh infection model. The pharmacokinetics of the vancomycin products were assessed in infected mice by population pharmacokinetic modeling. No differences were seen across the vancomycin products with regard to any in vitro evaluation. Inhibitory sigmoid maximal bacterial kill (Emax) modeling of the relationship between vancomycin dosage and the killing of the bacteria in mice in vivo yielded similar Emax and EC50 (drug exposure driving one-half Emax) values for bacterial killing. Further, there were no differences in the pharmacokinetic clearances of the 6 vancomycin products from infected mice. There were no important pharmacodynamic differences in the in vitro or in vivo activities among the six vancomycin products evaluated.


Assuntos
Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacocinética , Animais , Proteínas Sanguíneas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Infusões Parenterais , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Estados Unidos , Vancomicina/farmacologia
7.
Anal Chem ; 87(14): 6995-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26086621

RESUMO

Mass spectrometry has gained widespread acceptance for the characterization of protein therapeutics as a part of the regulatory approval process. Improvements in mass spectrometer sensitivity, resolution, and mass accuracy have enabled more detailed and confident analysis of larger biomolecules for confirming amino acid sequences, assessing sequence variants, and characterizing post translational modifications. This work demonstrates the suitability of a combined approach using intact MS and multistage top down MS/MS analyses for the characterization of a protein therapeutic drug. The protein therapeutic granulocyte-colony stimulating factor was analyzed using a Thermo Fusion Tribrid mass spectrometer using a multistage top down MS approach. Intact mass analysis identified the presence of two disulfide bonds based on exact mass shifts while a combined collision induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) MS/MS approach obtained 80% protein sequence coverage. Isolating MS/MS fragments for MS(3) analysis using HCD or CID increased the sequence coverage to 89%. 95% sequence coverage was obtained by reducing human granulocyte-colony stimulating factor (G-CSF) prior to MS/MS and MS(3) analysis to specifically target the residues between the disulfide bonds. The use of this combined intact MS and multistage top down MS approach allows for rapid and accurate determination of the primary sequence of a protein therapeutic drug product.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Fragmentos de Peptídeos/análise , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Fator Estimulador de Colônias de Granulócitos/química , Humanos , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/isolamento & purificação
8.
Clin Endocrinol (Oxf) ; 82(3): 352-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24988876

RESUMO

CONTEXT: Early-life factors (including intrauterine growth retardation) may influence the development of type 2 diabetes. We postulated that birth size is associated with cortisol levels, which itself could alter serum adipomyokines (i.e. adiponectin, IGF-I, myostatin) and glucose metabolism. DESIGN: An observational study with 60 Afro-Caribbean young adults from a birth cohort. MEASUREMENTS: Fasting blood was drawn for serum adiponectin, IGF-I and myostatin. A frequently sampled intravenous glucose tolerance test measured insulin sensitivity (SI), acute insulin response (AIRg), disposition index (DI) and glucose effectiveness (Sg). Body composition was assessed by dual-energy X-ray absorptiometry. Salivary cortisol was collected at home at 0800 and 2300 h. Sex-adjusted correlations were used to explore the relationships between birth size, cortisol and the metabolic variables. RESULTS: The participants were 55% male, mean age 23·1 ± 0·5 years. Birth weight correlated positively with 2300-h cortisol (P = 0·04), although not after adjusting for gestational age. Gestational age was correlated with 2300 h cortisol (r = 0·38, P = 0·03), even after adjusting for birth weight (P = 0·02). 2300 h cortisol was not associated with adiponectin, IGF-I, myostatin, SI, AIRg or DI, but was negatively correlated with Sg (r = -0·30, P = 0·05) even after adjusting for birth and adult anthropometry. Adiponectin, IGF-I and myostatin were unrelated to glucose metabolism. CONCLUSIONS: Gestational age is associated with higher nocturnal cortisol, which in turn is associated with lower glucose effectiveness in adulthood. Higher glucose effectiveness could therefore be a compensatory mechanism to improve glucose uptake.


Assuntos
Hidrocortisona/metabolismo , Adiponectina/sangue , Adulto , Peso ao Nascer/fisiologia , Glicemia/metabolismo , Região do Caribe , Diabetes Mellitus Tipo 2/sangue , Feminino , Idade Gestacional , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Miostatina/sangue , Gravidez , Adulto Jovem
9.
Toxicol Appl Pharmacol ; 287(3): 246-52, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26079829

RESUMO

The erythropoietin analog peginesatide was withdrawn from marketing due to unexpected severe anaphylactic reactions associated with administration of the multi-use formulation. The adverse events occurred rapidly following the first ever administration of the drug with most affected patients becoming symptomatic in less than 30min. This is most consistent with an anaphylactoid reaction due to direct activation of mast cells. Laboratory evaluation was undertaken using rat peritoneal mast cells as the model system. Initial studies showed that high concentrations of the formulated drug as well as formulated vehicle alone could cause mast cell degranulation as measured by histamine release. The purified active drug was not able to cause histamine release whereas the vehicle filtrate and lab created drug vehicle were equally potent at causing histamine release. Individual formulations of vehicle leaving one component out showed that histamine release was due to phenol. Dose response studies with phenol showed a very sharp dose response curve that was similar in three buffer systems. Cellular analysis by flow cytometry showed that the histamine release was not due to cell death, and that changes in light scatter parameters consistent with degranulation were rapidly observed. Limited testing with primary human mast cells showed a similar dose response of histamine release with exposure to phenol. To provide in vivo confirmation, rats were injected with vehicle formulated with various concentrations of phenol via a jugular vein cannula. Significant release of histamine was detected in blood samples taken 2min after dosing at the highest concentrations tested.


Assuntos
Degranulação Celular/efeitos dos fármacos , Excipientes/toxicidade , Hematínicos/toxicidade , Histamina/metabolismo , Mastócitos/efeitos dos fármacos , Peptídeos/toxicidade , Fenol/toxicidade , Animais , Células Cultivadas , Química Farmacêutica , Relação Dose-Resposta a Droga , Excipientes/administração & dosagem , Excipientes/química , Feminino , Hematínicos/química , Histamina/sangue , Humanos , Injeções Intravenosas , Mastócitos/metabolismo , Camundongos Endogâmicos NOD , Peptídeos/química , Fenol/administração & dosagem , Fenol/química , Cultura Primária de Células , Ratos Sprague-Dawley , Medição de Risco , Fatores de Tempo
10.
Anal Bioanal Chem ; 407(1): 79-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25200070

RESUMO

The size, heterogeneity, and biological production process of protein therapeutics like monoclonal antibodies create unique challenges for their analysis and regulation compared with small molecules. Complete structural characterization of a molecule 1000-fold heavier than aspirin is no small feat. Biological post-translational modifications such as glycosylation further complicate their characterization and regulation. Even approved protein therapeutics are known to contain multiple structural variants in differing amounts. Structural modification occurs during production and storage as well as within patients after administration. Thus, the goals of manufacturers and regulators are to control and characterize this heterogeneity, not take on the impossible task of eliminating it. The aim of this review is to describe the structural heterogeneities known to occur with immunoglobulin G (IgG), note current detection and analytical strategies, establish their causes, and define their potential effects on the ultimate safety, purity, and potency of antibody therapeutics when known.


Assuntos
Imunoglobulina G/química , Imunoglobulina G/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Glicosilação , Humanos , Imunoglobulina G/genética , Imunoglobulina G/uso terapêutico
11.
Anal Bioanal Chem ; 407(3): 749-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25260409

RESUMO

This work describes orthogonal NMR and MS tests for the structure and composition of the drug protamine sulfate derived from chum salmon. The spectral response pattern obtained by 1D-(1)H-NMR and MS methods from salmon protamine, a mixture of four predominant peptide chains, is dependent on the amino acid sequence and abundance of each peptide. Thus, an assay was developed based on the ratios of alanine, glycine and arginine amino acid residue NMR peaks (relative to the arginine CδH proton signal) in this mixture that are unique to the salmon source. In addition, MS analysis provided sensitive sequence determination and impurity analysis based on shifts from exact masses. Spectra from protamine sulfate active pharmaceutical ingredient (API) suppliers and from a formulated drug product purchased from the US market were examined. Based on these marketplace survey data, NMR acceptance criteria for chum salmon derived protamine sulfate could be based on the absence of aromatic amino acid signals and on ratios of Ala ßH/Arg δH, Gly αH/Arg δH and Arg αH/Arg δH integrated areas of 2.4 ± 1%, 9.4 ± 3% and 50 ± 5%, respectively. For MS, acceptance criteria based on the presence of specific mass to charge (m/z) ratio peaks (m/z = +8 of 530.455, 540.841, 532.208 and 508.950) could be used for the four major peptides present in the mixture with relative abundances of 17 ± 1%, 31 ± 2%, 27 ± 1% and 25 ± 3%, respectively. The specificity of the combined NMR and MS assay was tested by comparison to data obtained from herring protamine which contains a different mixture of peptides with related amino acid sequences. Both assays were able to clearly distinguish protamine derived from these different natural sources.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Oncorhynchus keta , Protaminas/análise , Sequência de Aminoácidos , Aminoácidos/análise , Animais , Técnicas de Química Analítica , Preparações Farmacêuticas/análise , Tecnologia Farmacêutica/métodos
12.
Anal Bioanal Chem ; 407(29): 8647-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26458562

RESUMO

Glatiramer acetate (GA) is a mixture of synthetic copolymers consisting of four amino acids (glutamic acid, lysine, alanine, and tyrosine) with a labeled molecular weight range of 5000 to 9000 Da. GA is marketed as Copaxone™ by Teva for the treatment of multiple sclerosis. Here, the agency has evaluated the structure and composition of GA and a commercially available comparator, Copolymer-1. Modern analytical technologies which can characterize these complex mixtures are desirable for analysis of their comparability and structural "sameness." In the studies herein, a molecular fingerprinting approach is taken using mass-accurate mass spectrometry (MS) analysis, nuclear magnetic resonance (NMR) (1D-(1)H-NMR, 1D-(13)C-NMR, and 2D NMR), and asymmetric field flow fractionation (AFFF) coupled with multi-angle light scattering (MALS) for an in-depth characterization of three lots of the marketplace drug and a formulated sample of the comparator. Statistical analyses were applied to the MS and AFFF-MALS data to assess these methods' ability to detect analytical differences in the mixtures. The combination of multiple orthogonal measurements by liquid chromatography coupled with MS (LC-MS), AFFF-MALS, and NMR on the same sample set was found to be fit for the intended purpose of distinguishing analytical differences between these complex mixtures of peptide chains.


Assuntos
Acetato de Glatiramer/química , Imunossupressores/química , Fracionamento por Campo e Fluxo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
13.
Rapid Commun Mass Spectrom ; 28(15): 1757-63, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975256

RESUMO

RATIONALE: Protamine sulfate is a peptide drug product consisting of multiple basic peptides. As traditional high-performance liquid chromatography (HPLC) separation methods may not resolve these peptides, as well as any possible peptide-related impurities, a method utilizing top-down mass spectrometry was developed for the characterization of complex peptide drug products, including any low-level impurities, which is described in this study. METHODS: Herring protamine sulfate was used as a model system to demonstrate the applicability of the method. Direct infusion mass spectrometry and tandem mass spectrometry (MS/MS) on a high-resolution, mass accurate instrument with electron transfer dissociation (ETD) were used to identify all the species present in the herring protamine sulfate sample. Identifications were made based on mass accuracy analysis as well as MS/MS fragmentation patterns. RESULTS: Complete sequence coverage of the three abundant herring protamine peptides was obtained using the top-down ETD-MS/MS method, which also identified a discrepancy with the published herring protamine peptide sequences. Additionally, three low-abundance related peptide species were also identified and fully characterized. These three peptides had not previously been reported as herring protamine peptides, but could be related to the published sequences through amino acid additions and/or substitutions. CONCLUSIONS: A method for the characterization of protamine, a complex peptide drug product, was developed that can be extended to other complex peptide or protein drug products. The selectivity and sensitivity of this method improves a regulator's ability to identify peptide impurities not previously observed using the established methods and presents an opportunity to better understand the composition of complex peptide drug products.


Assuntos
Contaminação de Medicamentos/prevenção & controle , Protaminas/análise , Protaminas/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos/métodos , Transporte de Elétrons , Dados de Sequência Molecular
14.
Anal Bioanal Chem ; 406(26): 6559-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24264620

RESUMO

The FDA has approved more than 100 protein and peptide drugs with hundreds more in the pipeline (Lanthier et al. in Nat Rev Drug Discov 7(9):733-737, 2008). Many of these originator biologic products are now coming off patent and are being manufactured by alternate methods than the innovator as follow-on drugs. Because changes to the production method often lead to subtle differences (e.g., degradation products, different posttranslational modifications or impurities) in the therapeutic (Schiestl et al. in Nat Biotechnol 29(4):310-312, 2011), there is a critical need to define techniques to test and insure the quality of these drugs. In addition, the emergence of protein therapeutics manufactured by unapproved methodologies presents an ongoing and growing regulatory challenge. In this work, high-resolution mass spectrometry was used to determine the presence or absence of posttranslational modifications for one FDA-approved and three foreign-sourced, unapproved filgrastim products. Circular dichroism (CD) was used to compare the secondary structure and probe the temperature stability of these products. Native 2D (1)H,(15)N-heteronuclear singular quantum coherence (HSQC) NMR test was applied to these samples to compare the higher-order structure of the four products. Finally, a cell proliferation assay was performed on the filgrastims to compare their bioactivity, and stressed filgrastim was tested in the bioassay to better understand the effects of changes in protein structure on activity. The results showed that orthogonal approaches are capable of characterizing the physiochemical properties of this protein drug and assessing the impact of structural changes on filgrastim purity and potency.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Filgrastim , Espectrometria de Massas/métodos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
15.
Regul Toxicol Pharmacol ; 70(1): 182-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25010377

RESUMO

The clinical use of local anesthetic products to anesthetize mucous membranes has been associated with methemoglobinemia (MetHba), a serious condition in which the blood has reduced capacity to carry oxygen. An evaluation of spontaneous adverse event reporting of MetHba submitted to FDA through 2013 identified 375 reports associated with benzocaine and 16 reports associated with lidocaine. The current study was performed to determine the relative ability of benzocaine and lidocaine to produce methemoglobin (MetHb) in vitro. Incubation of 500µM benzocaine with whole human blood and pooled human liver S9 over 5h resulted in MetHb levels equaling 39.8±1.2% of the total hemoglobin. No MetHb formation was detected for 500µM lidocaine under the same conditions. Because liver S9 does not readily form lidocaine hydrolytic metabolites based on xylidine, a primary metabolic pathway, 500µM xylidine was directly incubated with whole blood and S9. Under these conditions MetHb levels of 4.4±0.4% were reached by 5h. Studies with recombinant cytochrome P450 revealed benzocaine to be extensively metabolized by CYP 1A2, with 2B6, 2C19, 2D6, and 2E1 also having activity. We conclude that benzocaine produces much more MetHb in in vitro systems than lidocaine or xylidine and that benzocaine should be more likely to cause MetHba in vivo as well.


Assuntos
Anestésicos Locais/toxicidade , Benzocaína/toxicidade , Lidocaína/toxicidade , Metemoglobinemia/induzido quimicamente , Anestésicos Locais/metabolismo , Compostos de Anilina/metabolismo , Benzocaína/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Técnicas In Vitro , Lidocaína/metabolismo , Fígado/metabolismo , Metemoglobina/metabolismo
16.
Clin Nutr ; 43(3): 747-755, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38330703

RESUMO

BACKGROUNDS & AIMS: Childhood malnutrition is a major global health problem with long-term sequelae, including non-communicable diseases (NCDs). Mechanisms are unknown but may involve metabolic programming, resulting from "short-term" solutions to optimise survival by compromising non-priority organs. As key players in lipid metabolism, desaturases have been shown to be predictive of NCDs. We hypothesised that the association between specific desaturase activities and NCD risk determinants (including body composition, serum glucose, insulin levels, and blood pressure) are influenced by childhood post-malnutrition weight gain. METHODS: 278 Afro-Caribbean adults with well-documented clinical history of severe malnutrition in childhood were studied. Extensive metabolic analyses including body composition (DXA), fasting serum glucose and lipidomics (n = 101), and fasting serum insulin (n = 83) were performed in malnutrition survivors and matched community controls (n = 90). Established lipid ratios were used as proxies of desaturase activities: CE 16:1/CE 16:0 for stearoyl-CoA desaturase (SCD1), LysoPC 20:4/20:3 for fatty acid desaturase 1 (FADS1), and LysoPC 20:3/18:2 for FADS2. RESULTS: Compared to community controls, adult malnutrition survivors (mean ± SD) age 28.3 ± 7.8 and BMI 23.6 ± 5.2 had higher SCD1 and FADS1 activity, (B ± SE) 0.07 ± 0.02 and 0.7 ± 0.08, respectively, but lower FADS2 activities (B ± SE) -0.05 ± 0.01, adjusted for sex and age (p < 0.0005). SCD1 was positively associated with adult BMI and body fat percentage, and negatively associated with lean mass and height. Stratification based on weight gain during nutritional rehabilitation among malnutrition survivors might signal the potential associations between weight gain during that critical period, desaturase activities, and some of adult metabolic parameters, with the lowest tertiles (slowest catch-up weight gain) performing more similarly to controls. CONCLUSIONS: In adult survivors of early-life severe acute malnutrition, desaturase activity is associated with markers of NCD risk, especially adiposity. These associations seem to be strengthened by faster weight gain during nutritional rehabilitation.


Assuntos
Insulinas , Desnutrição , Doenças não Transmissíveis , Adulto , Humanos , Adulto Jovem , Fatores de Risco Cardiometabólico , Aumento de Peso , Glucose
18.
Anal Chem ; 85(3): 1531-9, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23249142

RESUMO

The application of multiplexed isobaric tandem mass tag (TMT) labeling and an LTQ Orbitrap XL ETD (electron transfer dissociation) hybrid mass spectrometer as a direct approach for qualitative and quantitative characterization of glycoproteins is reported. Bovine fetuin was used as a model glycoprotein in this study. For online liquid chromatography-mass spectrometry (LC-MS) analysis, high-resolution, mass accurate full scan MS spectra were acquired in the Orbitrap mass analyzer followed by data-dependent tandem mass spectrometry (MS/MS) with alternating collision-induced dissociation (CID), ETD, and higher-energy collisional dissociation (HCD) scans. An additional in-source dissociation scan was used as a highly sensitive and selective detection method for eluting glycosylated peptides. By alternatively using three different dissociation methods, 23 glycoforms from all 5 corresponding glycopeptides were identified from a trypsin digest of bovine fetuin. With ETD, labile glycans were retained without any signs of carbohydrate cleavage with concurrent fragmentation of the peptide backbone. Glycosylation sites were clearly localized from the ETD fragmentation data. Glycan structure elucidation was accomplished using CID. The CID experiments generated fragment ions predominantly from cleavage of glycosidic bonds without breaking the peptide bond. Novel to this method, the TMT labeling protocol was modified and adapted for higher labeling efficiency, and a TriVersa NanoMate was used to reinfuse samples to improve ETD and HCD spectra of glycopeptides. Quantification with TMT was verified based on the HCD spectra from multiple nonglycopeptides and glycopeptides. This method can be used as a qualitative and quantitative technique for direct characterization of glycoproteins and has applicability for detection of counterfeit glycoprotein drug products.


Assuntos
Glicoproteínas/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida/métodos , Transporte de Elétrons/fisiologia , Glicoproteínas/metabolismo , Dados de Sequência Molecular
19.
J Nutr ; 148(2): 170-171, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490106
20.
Analyst ; 138(10): 3058-65, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23579346

RESUMO

Liquid chromatography-mass spectrometry (LC-MS) is an information rich analytical tool that can provide fast, robust and sensitive characterization of protein therapeutics for quality assurance and structural comparison. Herein, structural characterization of two anti-CD20 monoclonal antibodies obtained from two different sources was performed using a middle-down LC-MS strategy to determine if they can be analytically differentiated. Through the use of a specific enzymatic digestion method using IdeS with subsequent LC-MS analysis, we show that the anti-CD20 monoclonal antibody that has been approved by the FDA can be partially characterized and differentiated analytically from an Indian sourced product that lacks FDA approval. In comparison to the FDA-approved product, differential modifications to both the N- and C-termini result in increased charge heterogeneity for the Indian product. In addition, significant differences in the intensities of the observed glycoforms between the two antibodies were detected. While this study assesses only one lot of each of a FDA approved drug product and the Indian sourced drug product, the observed differences may represent process specific fingerprints that could be useful for surveillance purposes.


Assuntos
Anticorpos Monoclonais Humanizados/análise , Anticorpos Monoclonais/análise , Antígenos CD20/química , Reações Antígeno-Anticorpo , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA