RESUMO
The identification of bioactive natural products (NPs) in complex mixtures has become an important subject of contemporary NP research. In an attempt to address this challenge, the present work proposes an integrated strategy that combines tandem mass spectrometry (MS2)-based molecular networking (MN), a partial least-squares (PLS) chemometric model, as well as 13C NMR-based dereplication using MixONat software. In addition, an advanced glycation end product (AGEs) assay was used for activity evaluation. The approach was implemented on a Garcinia parvifolia bark extract that comprised a high content of prenylated xanthones and had previously shown a notable inhibitory effect on AGE formation. As a main result, the proposed strategy permitted the identification of potentially active metabolites within complex mixtures and their annotation with a higher level of confidence by NMR data. Overall, this comprehensive approach provides a powerful and efficient solution for the targeting and annotating of active compounds in complex NP mixtures.
Assuntos
Produtos Biológicos , Garcinia , Garcinia/química , Estrutura Molecular , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Espectrometria de Massas em Tandem/métodos , Casca de Planta/química , Xantonas/química , Xantonas/farmacologia , Produtos Finais de Glicação Avançada , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Análise dos Mínimos Quadrados , SoftwareRESUMO
The unfolded protein response (UPR) is a key component of fungal virulence. The prenylated xanthone γ-mangostin isolated from Garcinia mangostana (Clusiaceae) fruit pericarp, has recently been described to inhibit this fungal adaptative pathway. Considering that Calophyllum caledonicum (Calophyllaceae) is known for its high prenylated xanthone content, its stem bark extract was fractionated using a bioassay-guided procedure based on the cell-based anti-UPR assay. Four previously undescribed xanthone derivatives were isolated, caledonixanthones N-Q (3, 4, 8, and 12), among which compounds 3 and 8 showed promising anti-UPR activities with IC50 values of 11.7 ± 0.9 and 7.9 ± 0.3 µM, respectively.
Assuntos
Calophyllum , Resposta a Proteínas não Dobradas , Xantonas , Xantonas/farmacologia , Xantonas/química , Xantonas/isolamento & purificação , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Calophyllum/química , Estrutura Molecular , Humanos , Casca de Planta/químicaRESUMO
INTRODUCTION: Propolis is a resinous natural substance collected by honeybees from buds and exudates of various trees and plants; it is widely accepted that the composition of propolis depends on the phytogeographic characteristics of the site of collection. OBJECTIVES: The aim of this study was to determine the phytochemical composition of ethanolic extracts from eight propolis batches collected in different regions of Benin (north, center, and south) and Congo, Africa. MATERIAL AND METHODS: Characterization of propolis samples was performed by using different hyphenated chromatographic methods combined with carbon-13 nuclear magnetic resonance (13 C NMR) dereplication with MixONat software. Their antioxidant or anti-advanced glycation end-product (anti-AGE) activity was then evaluated by using diphenylpicrylhydrazyl and bovine serum albumin assays, respectively. RESULTS: Chromatographic analyses combined with 13 C NMR dereplication showed that two samples from the center of Benin exhibited, in addition to a huge amount of pentacyclic triterpenes, methoxylated stilbenoids or phenanthrenoids, responsible for the antioxidant activity of the extract for the first one. Among them, combretastatins might be cytotoxic. For the second one, the prenylated flavanones known in Macaranga-type propolis were responsible for its significant anti-AGE activity. The sample from Congo was composed of many triterpene derivatives belonging to Mangifera indica species. CONCLUSION: Therefore, propolis from the center of Benin seems to be of particular interest, due to its antioxidant and anti-AGE properties. Nevertheless, as standardization of propolis is difficult in tropical zones due to its great chemodiversity, a systematic phytochemical analysis is required before promoting the use of propolis in food and health products in Africa.
Assuntos
Própole , Animais , Própole/química , Antioxidantes/química , Congo , Benin , Espectroscopia de Ressonância Magnética , Compostos FitoquímicosRESUMO
Voltage-gated Na+ (NaV) channels are significant therapeutic targets for the treatment of cardiac and neurological disorders, thus promoting the search for novel NaV channel ligands. With the objective of discovering new blockers of NaV channel ligands, we screened an In-House vegetal alkaloid library using fluorescence cell-based assays. We screened 62 isoquinoline alkaloids (IA) for their ability to decrease the FRET signal of voltage sensor probes (VSP), which were induced by the activation of NaV channels with batrachotoxin (BTX) in GH3b6 cells. This led to the selection of five IA: liriodenine, oxostephanine, thalmiculine, protopine, and bebeerine, inhibiting the BTX-induced VSP signal with micromolar IC50. These five alkaloids were then assayed using the Na+ fluorescent probe ANG-2 and the patch-clamp technique. Only oxostephanine and liriodenine were able to inhibit the BTX-induced ANG-2 signal in HEK293-hNaV1.3 cells. Indeed, liriodenine and oxostephanine decreased the effects of BTX on Na+ currents elicited by the hNaV1.3 channel, suggesting that conformation change induced by BTX binding could induce a bias in fluorescent assays. However, among the five IA selected in the VSP assay, only bebeerine exhibited strong inhibitory effects against Na+ currents elicited by the hNav1.2 and hNav1.6 channels, with IC50 values below 10 µM. So far, bebeerine is the first BBIQ to have been reported to block NaV channels, with promising therapeutical applications.
Assuntos
Alcaloides , Corantes Fluorescentes , Alcaloides/farmacologia , Batraquiotoxinas/metabolismo , Batraquiotoxinas/farmacologia , Viés , Células HEK293 , Humanos , Isoquinolinas/farmacologia , Ligantes , Sódio/metabolismoRESUMO
The growing use of herbal medicines worldwide requires ensuring their quality, safety, and efficiency to consumers and patients. Quality controls of vegetal extracts are usually undertaken according to pharmacopeial monographs. Analyses may range from simple chemical experiments to more sophisticated but more accurate methods. Nowadays, metabolomic analyses allow a fast characterization of complex mixtures. In the field, besides mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR) has gained importance in the direct identification of natural products in complex herbal extracts. For a decade, automated dereplication processes based on 13C-NMR have been emerging to efficiently identify known major compounds in mixtures. Though less sensitive than MS, 13C-NMR has the advantage of being appropriate to discriminate stereoisomers. Since NMR spectrometers nowadays provide useful datasets in a reasonable time frame, we have recently made available MixONat, a software that processes 13C as well as distortionless enhancement by polarization transfer (DEPT)-135 and -90 data, allowing carbon multiplicity (i.e., CH3, CH2, CH, and C) filtering as a critical step. MixONat requires experimental or predicted chemical shifts (δ C) databases and displays interactive results that can be refined based on the user's phytochemical knowledge. The present article provides step-by-step instructions to use MixONat starting from database creation with freely available and/or marketed δ C datasets. Then, for training purposes, the reader is led through a 30â-â60 min procedure consisting of the 13C-NMR based dereplication of a peppermint essential oil.
Assuntos
Produtos Biológicos , Produtos Biológicos/análise , Isótopos de Carbono , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , SoftwareRESUMO
Essential oils of aromatic plants represent an alternative to classical pest control with synthetic chemicals. They are especially promising for the alternative control of stored product pest insects. Here, we tested behavioral and electrophysiological responses of the stored product pest Tribolium confusum, to the essential oil of a Brazilian indigenous plant, Varronia globosa, collected in the Caatinga ecosystem. We analyzed the essential oil by GC-MS, tested the effects of the entire oil and its major components on the behavior of individual beetles in a four-way olfactometer, and investigated responses to these stimuli in electroantennogram recordings (EAG). We could identify 25 constituents in the essential oil of V. globosa, with anethole, caryophyllene and spathulenole as main components. The oil and its main component anethole had repellent effects already at low doses, whereas caryophyllene had only a repellent effect at a high dose. In addition, the essential oil abolished the attractive effect of the T. confusum aggregation pheromone. EAG recordings revealed dose-dependent responses to the individual components and increasing responses to the blend and even more to the entire oil. Our study reveals the potential of anethole and the essential oil of V. globosa in the management of stored product pests.
Assuntos
Antenas de Artrópodes/fisiologia , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos , Magnoliopsida/química , Óleos Voláteis , Tribolium/fisiologia , Animais , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologiaRESUMO
Whether chemists or biologists, researchers dealing with metabolomics require tools to decipher complex mixtures. As a part of metabolomics and initially dedicated to identifying bioactive natural products, dereplication aims at reducing the usual time-consuming process of known compounds isolation. Mass spectrometry and nuclear magnetic resonance are the most commonly reported analytical tools during dereplication analysis. Though it has low sensitivity, 13C NMR has many advantages for such a study. Notably, it is nonspecific allowing simultaneous high-resolution analysis of any organic compounds including stereoisomers. Since NMR spectrometers nowadays provide useful data sets in a reasonable time frame, we have embarked upon writing software dedicated to 13C NMR dereplication. The present study describes the development of a freely distributed algorithm, namely MixONat and its ability to help researchers decipher complex mixtures. Based on Python 3.5, MixONat analyses a {1H}-13C NMR spectrum optionally combined with DEPT-135 and 90 data-to distinguish carbon types (i.e., CH3, CH2, CH, and C)-as well as a MW filtering. The software requires predicted or experimental carbon chemical shifts (δc) databases and displays results that can be refined based on user interactions. As a proof of concept, this 13C NMR dereplication strategy was evaluated on mixtures of increasing complexity and exhibiting pharmaceutical (poppy alkaloids), nutritional (rosemary extracts) or cosmetics (mangosteen peel extract) applications. Associated results were compared with other methods commonly used for dereplication. MixONat gave coherent results that rapidly oriented the user toward the correct structural types of secondary metabolites, allowing the user to distinguish between structurally close natural products, including stereoisomers.
Assuntos
Produtos Biológicos/química , Espectroscopia de Ressonância Magnética/métodos , Software , Algoritmos , Alcaloides/química , Isótopos de Carbono/química , Bases de Dados de Compostos Químicos , Garcinia mangostana/química , Garcinia mangostana/metabolismo , Papaver/química , Papaver/metabolismo , Extratos Vegetais/química , Rosmarinus/química , Rosmarinus/metabolismoRESUMO
Phytochemical investigation of the root extracts of Hypericum perforatum led to the isolation of two biphenyl derivatives named hyperbiphenyls A and B (1 and 2) and four known xanthones (3-6). These structures were elucidated by spectroscopic and spectrometric methods including UV, NMR, and HRMS. The absolute configuration of the biphenyl derivatives was defined by two different approaches: biomimetic total synthesis of racemic hyperbiphenyl A followed by 1H and 19F NMR Mosher's esters analysis and stereoselective total synthesis of hyperbiphenyl B, permitting assignment of the S absolute configuration for both compounds. The bioactivity of compounds 1-6 toward a set of biomolecules, including major histocompatibility complex (MHC) molecules expressed on vascular endothelial cells, was measured. The results showed that the major xanthone, i.e., 5- O-methyl-2-deprenylrheediaxanthone B (3), is a potent inhibitor of MHC that efficiently reduces HLA-E, MHC-II, and MICA biomolecules on cell surfaces.
Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Hypericum/química , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Raízes de Plantas/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Fatores Imunológicos/síntese química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , EstereoisomerismoRESUMO
BACKGROUND: The genetic basis of colour development in red-flesh apples (Malus domestica Borkh) has been widely characterised; however, current models do not explain the observed variations in red pigmentation intensity and distribution. Available methods to evaluate the red-flesh trait rely on the estimation of an average overall colour using a discrete class notation index. However, colour variations among red-flesh cultivars are continuous while development of red colour is non-homogeneous and genotype-dependent. A robust estimation of red-flesh colour intensity and distribution is essential to fully capture the diversity among genotypes and provide a basis to enable identification of loci influencing the red-flesh trait. RESULTS: In this study, we developed a multivariable approach to evaluate the red-flesh trait in apple. This method was implemented to study the phenotypic diversity in a segregating hybrid F1 family (91 genotypes). We developed a Python pipeline based on image and colour analysis to quantitatively dissect the red-flesh pigmentation from RGB (Red Green Blue) images and compared the efficiency of RGB and CIEL*a*b* colour spaces in discriminating genotypes previously classified with a visual notation. Chemical destructive methods, including targeted-metabolite analysis using ultra-high performance liquid chromatography with ultraviolet detection (UPLC-UV), were performed to quantify major phenolic compounds in fruits' flesh, as well as pH and water contents. Multivariate analyses were performed to study covariations of biochemical factors in relation to colour expression in CIEL*a*b* colour space. Our results indicate that anthocyanin, flavonol and flavanol concentrations, as well as pH, are closely related to flesh pigmentation in apple. CONCLUSTION: Extraction of colour descriptors combined to chemical analyses helped in discriminating genotypes in relation to their flesh colour. These results suggest that the red-flesh trait in apple is a complex trait associated with several biochemical factors.
RESUMO
Concentrated bud macerates (CBMs) are obtained from meristematic tissues such as buds and young shoots by maceration in a solvent composed of glycerin, water and ethanol (1/1/1/, v/v). Their traditional utilization in gemmotherapy has gained interest in the past years, and the knowledge of their chemical characterization can provide commercial arguments, particularly to secure their quality control. Therefore, an optimized method for phytochemical analysis including glycerol removal by a preliminary solid phase extraction (SPE) followed by compound identification using high performance liquid chromatography coupled with ultra-violet and tandem mass detectors (HPLC-UV-MS2) was developed. This method was applied on 5 CBMs obtained from Alnus glutinosa, Ribesnigrum, Rosmarinus officinalis, Rosa canina and Tilia tomentosa in order to determinate their chemical composition. Their antioxidant effects were also investigated by radical scavenging activity assays (DPPH and ORAC). Glycerol removal improved the resolution of HPLC chemical profiles and allowed us to perform TLC antioxidant screening. Our approach permitted the identification of 57 compounds distributed in eight major classes, three of them being common to all macerates including nucleosides, phenolic acids and glycosylated flavonoids. Quantification of the later class as a rutin equivalent (RE) showed a great disparity between Rosa canina macerate (809 mg RE/L), and the other ones (from 175 to 470 mg RE/L). DPPH and ORAC assays confirmed the great activity of Rosa canina (4857 and 6479 µmol TE/g of dry matter, respectively). Finally, phytochemical and antioxidant analysis of CBMs strengthened their phytomedicinal interest in the gemmotherapy field.
RESUMO
Glucosinolates and camalexin are secondary metabolites that, as phytoanticipins and phytoalexins, play a crucial role in plant defence. The present work proposes an improved analytical method for routine analysis and quantification of glucosinolates and camalexin in brassicaceous small-sized samples by using the very specific desulfation process of glucosinolates analysis and the specificity of fluorescence detection for camalexin analysis. The approach is based on a simultaneous ultrasound-assisted extraction followed by a purification on an anion-exchange column. Final analyses are conducted by HPLC-UV-MS for desulfo-glucosinolates and HPLC coupled to a fluorescence detector (HPLC-FLD) for camalexin. The method is linear for glucosinolates (50-3500 µM) and camalexin (0.025-5 µg.mL-1) with an LOD/LOQ of 3.8/12.6 µM and 0.014/0.046 µg.mL-1 respectively. The method demonstrated adequate precision, accuracy and trueness on certified reference rapeseed. A practical application of our approach was conducted on different Brassicaceae genera (Barbarea vulgaris, Brassica nigra, Capsella bursa-pastoris, Cardamine hirsuta, Coincya monensis, Sinapis arvensis, and Sisymbrium officinale) and Arabidopsis thaliana genotypes (Columbia and Wassilewskija). Futhermore, different plant organs (seeds and leaves) were analysed, previously inoculated or not with the pathogenic fungus Alternaria brassicicola.
Assuntos
Arabidopsis , Brassicaceae , Arabidopsis/química , Brassicaceae/química , Brassicaceae/metabolismo , Cromatografia Líquida , Glucosinolatos/análise , Glucosinolatos/química , Indóis/metabolismo , Tiazóis/metabolismoRESUMO
This data descriptor reports on the upload to a public repository (GNPS) of the IQAMDB, IsoQuinoline and Annonaceous Metabolites Data Base, comprising 320 tandem mass spectra. This project originated from our in-house collection of isoquinolines. The diversity of compounds included in this database was further extended through the contribution of two additional laboratories involved in isoquinoline alkaloids research: University of Angers and University of Manaus. The generated MS/MS data were processed and annotated on an individual basis to promote their straightforward reuse by natural product chemists interested in either the description of new isoquinoline alkaloids or the dereplication of isoquinoline-containing samples. The interest of the current repertoire for dereplication purposes has been validated based on the molecular networking of the well-investigated plant model Annona montana against the IQAMDB-implemented GNPS.
RESUMO
Liriodenine is a biologically active plant alkaloid with multiple effects on mammals, fungi, and bacteria, but has never been evaluated for insecticidal activity. Accordingly, liriodenine was applied topically in ethanolic solutions to adult female Anopheles gambiae, and found to be mildly toxic. Its lethality was synergized in mixtures with dimethyl sulfoxide and piperonyl butoxide. Recordings from the ventral nerve cord of larval Drosophila melanogaster showed that liriodenine was neuroexcitatory and reversed the inhibitory effect of 1 mM GABA at effective concentrations of 20-30 µM. GABA antagonism on the larval nervous system was equally expressed on both susceptible and cyclodiene-resistant rdl preparations. Acutely isolated neurons from Periplaneta americana were studied under patch clamp and inhibition of GABA-induced currents with an IC50 value of about 1 µM were observed. In contrast, bicuculline did not reverse the effects of GABA on cockroach neurons, as expected. In silico molecular models suggested reasonable structural concordance of liriodenine and bicuculline and isosteric hydrogen bond acceptor sites. This study is the first assessing of the toxicology of liriodenine on insects and implicates the GABA receptor as one likely neuronal target, where liriodenine might be considered an active chemical analog of bicuculline.
Assuntos
Aporfinas , Inseticidas , Animais , Aporfinas/toxicidade , Drosophila melanogaster , Feminino , Inseticidas/toxicidade , Receptores de GABARESUMO
Endogenous long-chain metabolites of vitamin E (LCMs) mediate immune functions by targeting 5-lipoxygenase (5-LOX) and increasing the systemic concentrations of resolvin E3, a specialized proresolving lipid mediator. SAR studies on semisynthesized analogues highlight α-amplexichromanol (27a), which allosterically inhibits 5-LOX, being considerably more potent than endogenous LCMs in human primary immune cells and blood. Other enzymes within lipid mediator biosynthesis were not substantially inhibited, except for microsomal prostaglandin E2 synthase-1. Compound 27a is metabolized by sulfation and ß-oxidation in human liver-on-chips and exhibits superior metabolic stability in mice over LCMs. Pharmacokinetic studies show distribution of 27a from plasma to the inflamed peritoneal cavity and lung. In parallel, 5-LOX-derived leukotriene levels decrease, and the inflammatory reaction is suppressed in reconstructed human epidermis, murine peritonitis, and experimental asthma in mice. Our study highlights 27a as an orally active, LCM-inspired drug candidate that limits inflammation with superior potency and metabolic stability to the endogenous lead.
Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Descoberta de Drogas , Inflamação/tratamento farmacológico , Inibidores de Lipoxigenase/farmacologia , Vitamina E/farmacologia , Administração Oral , Araquidonato 5-Lipoxigenase/genética , Relação Dose-Resposta a Droga , Humanos , Inflamação/metabolismo , Inibidores de Lipoxigenase/administração & dosagem , Inibidores de Lipoxigenase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Vitamina E/administração & dosagem , Vitamina E/metabolismoRESUMO
Mycobacterium ulcerans is the bacillus responsible for Buruli ulcer, an infectious disease and the third most important mycobacterial disease worldwide, after tuberculosis and leprosy. M. ulcerans infection is a type of panniculitis beginning mostly with a nodule or an oedema, which can progress to large ulcerative lesions. The lesions are caused by mycolactone, the polyketide toxin of M. ulcerans. Mycolactone plays a central role for host colonization as it has immunomodulatory and analgesic effects. On one hand, mycolactone induces analgesia by targeting type-2 angiotensin II receptors (AT2R), causing cellular hyperpolarization and neuron desensitization. Indeed, a single subcutaneous injection of mycolactone into the mouse footpad induces a long-lasting hypoesthesia up to 48 h. It was suggested that the long-lasting hypoesthesia may result from the persistence of a significant amount of mycolactone locally following its injection, which could be probably due to its slow elimination from tissues. To verify this hypothesis, we investigated the correlation between hypoesthesia and mycolactone bioavailability directly at the tissue level. Various quantities of mycolactone were then injected in mouse tissue and hypoesthesia was recorded with nociception assays over a period of 48 h. The hypoesthesia was maximal 6 h after the injection of 4 µg mycolactone. The basal state was reached 48 h after injection, which demonstrated the absence of nerve damage. Surprisingly, mycolactone levels decreased strongly during the first hours with a reduction of 70 and 90% after 4 and 10 h, respectively. Also, mycolactone did not diffuse in neighboring skin tissue and only poorly into the bloodstream upon direct injection. Nevertheless, the remaining amount was sufficient to induce hypoesthesia during 24 h. Our results thus demonstrate that intact mycolactone is rapidly eliminated and that very small amounts of mycolactone are sufficient to induce hypoesthesia. Taken together, our study points out that mycolactone ought to be considered as a promising analgesic.
RESUMO
This Data Descriptor announces the submission to public repositories of the monoterpene indole alkaloid database (MIADB), a cumulative collection of 172 tandem mass spectrometry (MS/MS) spectra from multiple research projects conducted in eight natural product chemistry laboratories since the 1960s. All data have been annotated and organized to promote reuse by the community. Being a unique collection of these complex natural products, these data can be used to guide the dereplication and targeting of new related monoterpene indole alkaloids within complex mixtures when applying computer-based approaches, such as molecular networking. Each spectrum has its own accession number from CCMSLIB00004679916 to CCMSLIB00004680087 on the GNPS. The MIADB is available for download from MetaboLights under the identifier: MTBLS142 ( https://www.ebi.ac.uk/metabolights/MTBLS142 ).
RESUMO
Secondary metabolites from lichens are known for exhibiting various biological effects such as anti-inflammatory, antioxidant and antibacterial activities. Despite this wide range of reported biological effects, their impact on the formation of advanced glycation end products (AGEs) remains vastly unexplored. The latter are known contributors to lifestyle and age-related diseases such as Alzheimer and Parkinson. Moreover, the development of atherosclerosis and arterial stiffness is causally linked to the formation of AGEs. With this in mind, the present work evaluated the inhibitory effects of secondary lichen metabolites on the formation of pentosidine-like AGEs' by using an in vitro, Maillard reaction based, fluorescence assay. Overall, thirty-seven natural and five synthetically modified compounds were tested, eighteen of which exhibiting IC50 values in the range of 0.05 to 0.70â¯mM. This corresponds to 2 to 32 fold of the inhibitory activity of aminoguanidine. Targeting one major inhibiting mechanism of AGEs formation, all compounds were additionally evaluated on their radical scavenging capacities in an DPPH assay. Furthermore, as both AGEs' formation and hypertension are major risk factors for atherosclerosis, compounds that were available in sufficient amounts were also tested for their vasodilative effects. Overall, and though some of the active compounds were previously reported cytotoxic, present results highlight the interesting potential of secondary lichen metabolites as anti-AGEs and vasodilative agents.
Assuntos
Produtos Biológicos/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Líquens/química , Vasodilatadores/farmacologia , Animais , Produtos Biológicos/isolamento & purificação , Masculino , Estrutura Molecular , Ratos Endogâmicos WKY , Metabolismo Secundário , Vasodilatadores/isolamento & purificaçãoRESUMO
Catecholamine (CA) secretion from the adrenal medullary tissue is a key step of the adaptive response triggered by an organism to cope with stress. Whereas molecular and cellular secretory processes have been extensively studied at the single chromaffin cell level, data available for the whole gland level are much scarcer. We tackled this issue in rat by developing an easy to implement experimental strategy combining the adrenal acute slice supernatant collection with a high-performance liquid chromatography-based epinephrine and norepinephrine (NE) assay. This technique affords a convenient method for measuring basal and stimulated CA release from single acute slices, allowing thus to individually address the secretory function of the left and right glands. Our data point that the two glands are equally competent to secrete epinephrine and NE, exhibiting an equivalent epinephrine:NE ratio, both at rest and in response to a cholinergic stimulation. Nicotine is, however, more efficient than acetylcholine to evoke NE release. A pharmacological challenge with hexamethonium, an α3-containing nicotinic acetylcholine receptor antagonist, disclosed that epinephrine- and NE-secreting chromaffin cells distinctly expressed α3 nicotinic receptors, with a dominant contribution in NE cells. As such, beyond the novelty of CA assays from acute slice supernatants, our study contributes at refining the secretory behavior of the rat adrenal medullary tissue, and opens new perspectives for monitoring the release of other hormones and transmitters, especially those involved in the stress response.