Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1271236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965314

RESUMO

CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.


Assuntos
Neoplasias , Linfócitos T Citotóxicos , Humanos , Linfócitos T CD4-Positivos
2.
Clin Cancer Res ; 29(15): 2894-2907, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199727

RESUMO

PURPOSE: Recent studies have demonstrated HLA class II (HLA-II)-dependent killing of melanoma cells by cytotoxic CD4 T cells. We investigated evolution of HLA-II-loss tumors that escape cytotoxic CD4 T-cell activity and contribute to immunotherapy resistance. EXPERIMENTAL DESIGN: Melanoma cells from longitudinal metastases were studied for constitutive and IFN-inducible HLA-II expression, sensitivity towards autologous CD4 T cells, and immune evasion by HLA-II loss. Clinical significance of HLA-II-low tumors was determined by analysis of transcriptomic data sets from patients with immune checkpoint blockade (ICB). RESULTS: Analysis of longitudinal samples revealed strong intermetastatic heterogeneity in melanoma cell-intrinsic HLA-II expression and subclonal HLA-II loss. Tumor cells from early lesions either constitutively expressed HLA-II, sensitizing to cytotoxic CD4 T cells, or induced HLA-II and gained CD4 T-cell sensitivity in the presence of IFNγ. In contrast, late outgrowing subclones displayed a stable CD4 T-cell-resistant HLA-II-loss phenotype. These cells lacked not only constitutive but also IFNγ-inducible HLA-II due to JAK1/2-STAT1 pathway inactivation. Coevolution of JAK1/2 deficiency and HLA-II loss established melanoma cross-resistance to IFNγ and CD4 T cells, as detected in distinct stage IV metastases. In line with their immune-evasive phenotype, HLA-II-low melanomas showed reduced CD4 T-cell infiltrates and correlated with disease progression under ICB. CONCLUSIONS: Our study links melanoma resistance to CD4 T cells, IFNγ, and ICB at the level of HLA-II, highlighting the significance of tumor cell-intrinsic HLA-II antigen presentation in disease control and calling for strategies to overcome its downregulation for improvement of patient outcome.

3.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35697379

RESUMO

BACKGROUND: Immune-stimulatory agents, like agonists of the innate immune receptor RIG-I, are currently tested in clinical trials as an intratumoral treatment option for patients with unresectable melanoma, aiming to enhance anti-tumor T cell responses. Switching of melanoma toward a dedifferentiated cell state has recently been linked to T cell and therapy resistance. It remains to be determined whether RIG-I agonists affect melanoma differentiation, potentially leading to T cell resistance. METHODS: Patient metastases-derived melanoma cell lines were treated with the synthetic RIG-I agonist 3pRNA, and effects on tumor cell survival, phenotype and differentiation were determined. Transcriptomic data sets from cell lines and metastases were analyzed for associations between RIG-I (DDX58) and melanoma differentiation markers and used to define signaling pathways involved in RIG-I-driven dedifferentiation. The impact of 3pRNA-induced melanoma dedifferentiation on CD8 T cell activation was studied in autologous tumor T cell models. RESULTS: RIG-I activation by 3pRNA induced apoptosis in a subpopulation of melanoma cells, while the majority of tumor cells switched into a non-proliferative cell state. Those persisters displayed a dedifferentiated cell phenotype, marked by downregulation of the melanocytic lineage transcription factor MITF and its target genes, including melanoma differentiation antigens (MDA). Transition into the MITFlow/MDAlow cell state was JAK-dependent, with some cells acquiring nerve growth factor receptor expression. MITFlow/MDAlow persisters switched back to the proliferative differentiated cell state when RIG-I signaling declined. Consistent with our in vitro findings, an association between melanoma dedifferentiation and high RIG-I (DDX58) levels was detected in transcriptomic data from patient metastases. Notably, despite their dedifferentiated cell phenotype, 3pRNA-induced MITFlow/MDAlow persisters were still efficiently targeted by autologous CD8 tumor-infiltrating T lymphocytes (TILs). CONCLUSIONS: Our results demonstrate that RIG-I signaling in melanoma cells drives a transient phenotypic switch toward a non-proliferative dedifferentiated persister cell state. Despite their dedifferentiation, those persisters are highly immunogenic and sensitive toward autologous TILs, challenging the concept of melanoma dedifferentiation as a general indicator of T cell resistance. In sum, our findings support the application of RIG-I agonists as a therapeutic tool for the generation of long-term clinical benefit in non-resectable melanoma.


Assuntos
Melanoma , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA