Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stroke ; 54(4): 1066-1077, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972348

RESUMO

BACKGROUND: Functional magnetic resonance imaging (fMRI) is ubiquitously used to study poststroke recovery. However, the fMRI-derived hemodynamic responses are vulnerable to vascular insult which can result in reduced magnitude and temporal delays (lag) in the hemodynamic response function (HRF). The cause of HRF lag remains controversial, and a better understanding of it is required to ensure accurate interpretation of poststroke fMRI studies. In this longitudinal study, we investigate the relationship between hemodynamic lag and cerebrovascular reactivity (CVR) following stroke. METHODS: Voxel-wise lag maps were calculated relative to a mean gray matter reference signal for 27 healthy controls and 59 patients with stroke across 2 time points (≈2 weeks and ≈4 months poststroke) and 2 conditions: resting-state and breath-holding. The breath-holding condition was additionally used to calculate CVR in response to hypercapnia. HRF lag was computed for both conditions across tissue compartments: lesion, perilesional tissue, unaffected tissue of the lesioned hemisphere, and their homolog regions in the unaffected hemisphere. CVR and lag maps were correlated. Group, condition, and time effects were assessed using ANOVA analyses. RESULTS: Compared with the average gray matter signal, a relative hemodynamic lead was observed in the primary sensorimotor cortices in resting-state and bilateral inferior parietal cortices in the breath-holding condition. Whole-brain hemodynamic lag was significantly correlated across conditions irrespective of group, with regional differences across conditions suggestive of a neural network pattern. Patients showed relative lag in the lesioned hemisphere which significantly reduced over time. Breath-hold derived lag and CVR had no significant voxel-wise correlation in controls, or patients within the lesioned hemisphere or the homologous regions of the lesion and perilesional tissue in the right hemisphere (mean r<0.1). CONCLUSIONS: The contribution of altered CVR to HRF lag was negligible. We suggest that HRF lag is largely independent of CVR, and could partly reflect intrinsic neural network dynamics among other factors.


Assuntos
Acidente Vascular Cerebral , Humanos , Estudos Longitudinais , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Hemodinâmica , Circulação Cerebrovascular/fisiologia
2.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34577609

RESUMO

Oligodendrocytes produce myelin, which provides insulation to axons and speeds up neuronal transmission. In ischaemic conditions, myelin is damaged, resulting in mental and physical disabilities. Recent evidence suggests that oligodendrocyte damage during ischaemia can be mediated by Transient Receptor Potential Ankyrin-1 (TRPA1), whose activation raises intracellular Ca2+ concentrations and damages compact myelin. Here, we show that TRPA1 is constitutively active in oligodendrocytes and the optic nerve, as the specific TRPA1 antagonist, A-967079, decreases basal oligodendrocyte Ca2+ concentrations and increases the size of the compound action potential (CAP). Conversely, TRPA1 agonists reduce the size of the optic nerve CAP in an A-967079-sensitive manner. These results indicate that glial TRPA1 regulates neuronal excitability in the white matter under physiological as well as pathological conditions. Importantly, we find that inhibition of TRPA1 prevents loss of CAPs during oxygen and glucose deprivation (OGD) and improves the recovery. TRPA1 block was effective when applied before, during, or after OGD, indicating that the TRPA1-mediated damage is occurring during both ischaemia and recovery, but importantly, that therapeutic intervention is possible after the ischaemic insult. These results indicate that TRPA1 has an important role in the brain, and that its block may be effective in treating many white matter diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA