Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064868

RESUMO

A new series of piperazine derivatives were synthesized and studied with the aim of obtaining dual inhibitors of P-glycoprotein (P-gp) and carbonic anhydrase XII (hCA XII) to synergistically overcome the P-gp-mediated multidrug resistance (MDR) in cancer cells expressing the two proteins, P-gp and hCA XII. Indeed, these hybrid compounds contain both P-gp and hCA XII binding groups on the two nitrogen atoms of the heterocyclic ring. All compounds showed good inhibitory activity on each protein (P-gp and hCA XII) studied individually, and many of them showed a synergistic effect in the resistant HT29/DOX and A549/DOX cell lines which overexpress both the target proteins. In particular, compound 33 displayed the best activity by enhancing the cytotoxicity and intracellular accumulation of doxorubicin in HT29/DOX and A549/DOX cells, thus resulting as promising P-gp-mediated MDR reverser with a synergistic mechanism. Furthermore, compounds 13, 27 and 32 induced collateral sensitivity (CS) in MDR cells, as they were more cytotoxic in resistant cells than in the sensitive ones; their CS mechanisms were extensively investigated.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Piperazinas , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/química , Piperazina/química , Piperazina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células HT29 , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Estrutura Molecular , Células A549
2.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203351

RESUMO

Metformin is the most prescribed glucose-lowering drug worldwide; globally, over 100 million patients are prescribed this drug annually. Some different action mechanisms have been proposed for this drug, but, surprisingly, no metabolite of metformin has ever been described. It was considered interesting to investigate the possible reaction of metformin with glucose following the Maillard reaction pattern. The reaction was first performed in in vitro conditions, showing the formation of two adducts that originated by the condensation of the two molecular species with the losses of one or two water molecules. Their structures were investigated by liquid chromatography coupled with mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS) and accurate mass measurements (HRMS). The species originated via the reaction of glucose and metformin and were called metformose and dehydrometformose, and some structural hypotheses were conducted. It is worth to emphasize that they were detected in urine samples from a diabetic patient treated with metformin and consequently they must be considered metabolites of the drug, which has never been identified before now. The glucose-related substructure of these compounds could reflect an improved transfer across cell membranes and, consequently, new hypotheses could be made about the biological targets of metformin.


Assuntos
Metformina , Humanos , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Membrana Celular , Glucose
3.
Molecules ; 29(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202651

RESUMO

The piperazine moiety is often found in drugs or in bioactive molecules. This widespread presence is due to different possible roles depending on the position in the molecule and on the therapeutic class, but it also depends on the chemical reactivity of piperazine-based synthons, which facilitate its insertion into the molecule. In this paper, we take into consideration the piperazine-containing drugs approved by the Food and Drug Administration between January 2011 and June 2023, and the synthetic methodologies used to prepare the compounds in the discovery and process chemistry are reviewed.


Assuntos
Piperazina , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA