Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33827928

RESUMO

The mode and extent of rapid evolution and genomic change in response to human harvesting are key conservation issues. Although experiments and models have shown a high potential for both genetic and phenotypic change in response to fishing, empirical examples of genetic responses in wild populations are rare. Here, we compare whole-genome sequence data of Atlantic cod (Gadus morhua) that were collected before (early 20th century) and after (early 21st century) periods of intensive exploitation and rapid decline in the age of maturation from two geographically distinct populations in Newfoundland, Canada, and the northeast Arctic, Norway. Our temporal, genome-wide analyses of 346,290 loci show no substantial loss of genetic diversity and high effective population sizes. Moreover, we do not find distinct signals of strong selective sweeps anywhere in the genome, although we cannot rule out the possibility of highly polygenic evolution. Our observations suggest that phenotypic change in these populations is not constrained by irreversible loss of genomic variation and thus imply that former traits could be reestablished with demographic recovery.


Assuntos
Biomassa , Gadus morhua/genética , Instabilidade Genômica , Polimorfismo Genético , Animais , Oceano Atlântico , Evolução Molecular , Gadus morhua/fisiologia
2.
Mol Ecol ; 32(12): 3025-3043, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36869618

RESUMO

Polymorphic species are useful models for investigating the evolutionary processes driving diversification. Such processes include colonization history as well as contemporary selection, gene flow, and genetic drift, which can vary between intraspecific morphs as a function of their distinct life histories. The interactive and relative influence of such evolutionary processes on morph differentiation critically informs morph-specific management decisions and our understanding of incipient speciation. We therefore investigated how geographic distance, environmental conditions, and colonization history interacted with morph migratory capacity in the highly polymorphic fish species, Arctic Charr (Salvelinus alpinus). Using an 87 k SNP chip we genetically characterized recently evolved anadromous, resident, and landlocked charr collected from 45 locations across a secondary contact zone of three charr glacial lineages in eastern Canada. A strong pattern of isolation by distance across all populations suggested geographic distance principally shaped genetic structure. Landlocked populations had lower genetic diversities and higher genetic differentiation than anadromous populations. However, effective population size was generally temporally stable in landlocked populations in comparison to anadromous populations. Genetic diversity positively correlated with latitude, potentially indicating southern anadromous populations' vulnerability to climate change and greater introgression between the Arctic and Atlantic glacial lineages in northern Labrador. Local adaptation was suggested by the observation of several environmental variables strongly associating with functionally relevant outlier genes including a region on chromosome AC21 potentially associated with anadromy. Our results demonstrate that gene flow, colonization history, and local adaptation uniquely interact to influence the genetic variation and evolutionary trajectory of populations.


Assuntos
Evolução Biológica , Deriva Genética , Animais , Geografia , Canadá , Genômica
3.
Mol Ecol ; 32(17): 4742-4762, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37430462

RESUMO

Environmental variation is increasingly recognized as an important driver of diversity in marine species despite the lack of physical barriers to dispersal and the presence of pelagic stages in many taxa. A robust understanding of the genomic and ecological processes involved in structuring populations is lacking for most marine species, often hindering management and conservation action. Cunner (Tautogolabrus adspersus) is a temperate reef fish with both pelagic early life-history stages and strong site-associated homing as adults; the species is also of interest for use as a cleaner fish in salmonid aquaculture in Atlantic Canada. We aimed to characterize genomic and geographic differentiation of cunner in the Northwest Atlantic. To achieve this, a chromosome-level genome assembly for cunner was produced and used to characterize spatial population structure throughout Atlantic Canada using whole-genome sequencing. The genome assembly spanned 0.72 Gbp and 24 chromosomes; whole-genome sequencing of 803 individuals from 20 locations from Newfoundland to New Jersey identified approximately 11 million genetic variants. Principal component analysis revealed four regional Atlantic Canadian groups. Pairwise FST and selection scans revealed signals of differentiation and selection at discrete genomic regions, including adjacent peaks on chromosome 10 across multiple pairwise comparisons (i.e. FST 0.5-0.75). Redundancy analysis suggested association of environmental variables related to benthic temperature and oxygen range with genomic structure. Results suggest regional scale diversity in this temperate reef fish and can directly inform the collection and translocation of cunner for aquaculture applications and the conservation of wild populations throughout the Northwest Atlantic.


Assuntos
Peixes , Perciformes , Animais , Canadá , Peixes/genética , Genoma/genética , Genômica
4.
Am Nat ; 199(5): 617-635, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472018

RESUMO

AbstractThe potentially significant genetic consequences associated with the loss of migratory capacity of diadromous fishes that have become landlocked in freshwater are poorly understood. Consistent selective pressures associated with freshwater residency may drive repeated differentiation both between allopatric landlocked and anadromous populations and within landlocked populations (resulting in sympatric morphs). Alternatively, the strong genetic drift anticipated in isolated landlocked populations could hinder consistent adaptation, limiting genetic parallelism. Understanding the degree of genetic parallelism underlying differentiation has implications for both the predictability of evolution and management practices. We employed an 87k single-nucleotide polymorphism (SNP) array to examine the genetic characteristics of landlocked and anadromous Arctic char (Salvelinus alpinus) populations from five drainages within Labrador, Canada. One gene was detected as an outlier between sympatric, size-differentiated morphs in each of two landlocked lakes. While no single locus differentiated all replicate pairs of landlocked and anadromous populations, several SNPs, genes, and paralogs were consistently detected as outliers in at least 70% of these pairwise comparisons. A significant C-score suggested that the amount of shared outlier SNPs across all paired landlocked and anadromous populations was greater than expected by chance. Our results indicate that despite their isolation, selection due to the loss of diadromy may drive consistent genetic responses in landlocked populations.


Assuntos
Lagos , Truta , Animais , Regiões Árticas , Genoma , Genômica , Truta/genética
5.
Mol Ecol ; 31(9): 2712-2729, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243721

RESUMO

Due to multigeneration domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disruption of local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic consequences posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene transcript expression differences among divergent farmed, wild and F1  hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of fry at the end of yolk sac absorption of a European (EO) farmed ("StofnFiskur", Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1  hybrids using 44 K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected the fewest differentially expressed transcripts between F1  hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the wild populations.


Assuntos
Salmo salar , Adaptação Fisiológica , Animais , Hibridização Genética , América do Norte , Salmo salar/genética , Transcriptoma/genética
6.
Mol Ecol ; 31(4): 1057-1075, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862998

RESUMO

Chromosomal rearrangements (e.g., inversions, fusions, and translocations) have long been associated with environmental variation in wild populations. New genomic tools provide the opportunity to examine the role of these structural variants in shaping adaptive differences within and among wild populations of non-model organisms. In Atlantic Salmon (Salmo salar), variations in chromosomal rearrangements exist across the species natural range, yet the role and importance of these structural variants in maintaining adaptive differences among wild populations remains poorly understood. We genotyped Atlantic Salmon (n = 1429) from 26 populations within a highly genetically structured region of southern Newfoundland, Canada with a 220K SNP array. Multivariate analysis, across two independent years, consistently identified variation in a structural variant (translocation between chromosomes Ssa01 and Ssa23), previously associated with evidence of trans-Atlantic secondary contact, as the dominant factor influencing population structure in the region. Redundancy analysis suggested that variation in the Ssa01/Ssa23 chromosomal translocation is strongly correlated with temperature. Our analyses suggest environmentally mediated selection acting on standing genetic variation in genomic architecture introduced through secondary contact may underpin fine-scale local adaptation in Placentia Bay, Newfoundland, Canada, a large and deep embayment, highlighting the importance of chromosomal structural variation as a driver of contemporary adaptive divergence.


Assuntos
Salmo salar , Animais , Cromossomos/genética , Genoma , Genômica , Genótipo , Salmo salar/genética
7.
J Anim Ecol ; 91(6): 1064-1072, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34679193

RESUMO

Predicting how species will respond to future climate change is of central importance in the midst of the global biodiversity crisis, and recent work has demonstrated the utility of population genomics for improving these predictions. Here, we suggest a broadening of the approach to include other types of genomic variants that play an important role in adaptation, like structural (e.g. copy number variants) and epigenetic variants (e.g. DNA methylation). These data could provide additional power for forecasting response, especially in weakly structured or panmictic species. Incorporating structural and epigenetic variation into estimates of climate change vulnerability, or maladaptation, may not only improve prediction power but also provide insight into the molecular mechanisms underpinning species' response to climate change.


Assuntos
Biodiversidade , Mudança Climática , Aclimatação , Adaptação Fisiológica/genética , Animais , Genômica
8.
Mol Ecol ; 30(18): 4415-4432, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34152667

RESUMO

The post-glacial colonization of Gander Lake in Newfoundland, Canada, by Arctic Charr (Salvelinus alpinus) provides the opportunity to study the genomic basis of adaptation to extreme deep-water environments. Colonization of deep-water (>50 m) habitats often requires extensive adaptation to cope with novel environmental challenges from high hydrostatic pressure, low temperature, and low light, but the genomic mechanisms underlying evolution in these environments are rarely known. Here, we compare genomic divergence between a deep-water morph adapted to depths of up to 288 m and a larger, piscivorous pelagic morph occupying shallower depths. Using both a SNP array and resequencing of whole nuclear and mitochondrial genomes, we find clear genetic divergence (FST  = 0.11-0.15) between deep and shallow water morphs, despite an absence of morph divergence across the mitochondrial genome. Outlier analyses identified many diverged genomic regions containing genes enriched for processes such as gene expression and DNA repair, cardiac function, and membrane transport. Detection of putative copy number variants (CNVs) uncovered 385 genes with CNVs distinct to piscivorous morphs, and 275 genes with CNVs distinct to deep-water morphs, enriched for processes associated with synapse assembly. Demographic analyses identified evidence for recent and local morph divergence, and ongoing reductions in diversity consistent with postglacial colonization. Together, these results show that Arctic Charr morph divergence has occurred through genome-wide differentiation and elevated divergence of genes underlying multiple cellular and physiological processes, providing insight into the genomic basis of adaptation in a deep-water habitat following postglacial recolonization.


Assuntos
Truta , Água , Adaptação Fisiológica/genética , Animais , Genoma , Genômica , Truta/genética
9.
Mol Ecol ; 29(12): 2160-2175, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32432380

RESUMO

As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selection); this divergence may then be further elevated in regions of reduced recombination. Atlantic salmon (Salmo salar) from Europe and North America diverged >600,000 years ago and despite some evidence of secondary contact, the majority of genetic data indicate substantial divergence between lineages. This deep divergence with potential gene flow provides an opportunity to investigate the role of different mechanisms that shape the genomic landscape during early speciation. Here, using 184,295 single nucleotide polymorphisms (SNPs) and 80 populations, we investigate the genomic landscape of differentiation across the Atlantic Ocean with a focus on highly differentiated regions and the processes shaping them. We found evidence of high (mean FST  = 0.26) and heterogeneous genomic differentiation between continents. Genomic regions associated with high trans-Atlantic differentiation ranged in size from single loci (SNPs) within important genes to large regions (1-3 Mbp) on four chromosomes (Ssa06, Ssa13, Ssa16 and Ssa19). These regions showed signatures consistent with selection, including high linkage disequilibrium, despite no significant reduction in recombination. Genes and functional enrichment of processes associated with differentiated regions may highlight continental differences in ocean navigation and parasite resistance. Our results provide insight into potential mechanisms underlying differences between continents, and evidence of near-fixed and potentially adaptive trans-Atlantic differences concurrent with a background of high genome-wide differentiation supports subspecies designation in Atlantic salmon.


Assuntos
Evolução Molecular , Salmo salar , Seleção Genética , Animais , Oceano Atlântico , Europa (Continente) , Genômica , América do Norte , Polimorfismo de Nucleotídeo Único , Salmo salar/genética , Estados Unidos
10.
Mol Ecol ; 29(22): 4280-4294, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32926595

RESUMO

The genetic underpinnings of incipient speciation, including the genomic mechanisms which contribute to morphological and ecological differentiation and reproductive isolation, remain poorly understood. The repeated evolution of consistently, phenotypically distinct morphs of Arctic Charr (Salvelinus alpinus) within the Quaternary period offer an ideal model to study the repeatability of evolution at the genomic level. Sympatric morphs of Arctic Charr are found across this species' circumpolar distribution. However, the specific genetic mechanisms driving this morph differentiation are largely unknown despite the cultural and economic importance of the anadromous morph. We used a newly designed 87k SNP chip to investigate the character and consistency of the genomic differences among sympatric morphs within three recently deglaciated and geographically proximate lakes in Labrador, Canada. We found genetically distinct small and large morph Arctic Charr in all three lakes consistent with resident and anadromous morphs, respectively. A degree of reproductive isolation among sympatric morphs is likely given genome-wide distributions of outlier SNPs and high genome-wide FST s. Across all lakes, outlier SNPs were largely nonoverlapping suggesting a lack of genetic parallelism driving morph differentiation. Alternatively, several genes and paralogous copies of the same gene consistently differentiated morphs across multiple lakes suggesting their importance to the manifestation of morphs. Our results confirm the utility of Arctic Charr as a model for investigating the predictability of evolution and support the importance of both genetic parallelism and nonparallelism to the incipient speciation of Arctic Charr morphs.


Assuntos
Lagos , Truta , Animais , Regiões Árticas , Canadá , Terra Nova e Labrador , Truta/genética
11.
Mol Ecol ; 28(8): 2074-2087, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30825352

RESUMO

Pleistocene glaciations drove repeated range contractions and expansions shaping contemporary intraspecific diversity. Atlantic salmon (Salmo salar) in the western and eastern Atlantic diverged >600,000 years before present, with the two lineages isolated in different southern refugia during glacial maxima, driving trans-Atlantic genomic and karyotypic divergence. Here, we investigate the genomic consequences of glacial isolation and trans-Atlantic secondary contact using 108,870 single nucleotide polymorphisms genotyped in 80 North American and European populations. Throughout North America, we identified extensive interindividual variation and discrete linkage blocks within and between chromosomes with known trans-Atlantic differences in rearrangements: Ssa01/Ssa23 translocation and Ssa08/Ssa29 fusion. Spatial genetic analyses suggest independence of rearrangements, with Ssa01/Ssa23 showing high European introgression (>50%) in northern populations indicative of post-glacial trans-Atlantic secondary contact, contrasting with low European ancestry genome-wide (3%). Ssa08/Ssa29 showed greater intrapopulation diversity, suggesting a derived chromosome fusion polymorphism that evolved within North America. Evidence of potential selection on both genomic regions suggests that the adaptive role of rearrangements warrants further investigation in Atlantic salmon. Our study highlights how Pleistocene glaciations can influence large-scale intraspecific variation in genomic architecture of northern species.


Assuntos
Variação Genética , Genética Populacional , Salmo salar/genética , Translocação Genética/genética , Animais , Cromossomos/genética , Genoma/genética , Genótipo , Cariótipo , Polimorfismo Genético/genética
12.
Heredity (Edinb) ; 122(1): 69-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29773897

RESUMO

In the northwest Atlantic Ocean, sea scallop (Placopecten magellanicus) has been characterized by a latitudinal genetic cline with a breakpoint between northern and southern genetic clusters occurring at ~45°N along eastern Nova Scotia, Canada. Using 96 diagnostic single-nucleotide polymorphisms (SNPs) capable of discriminating between northern and southern clusters, we examined fine-scale genetic structure of scallops among 27 sample locations, spanning the largest geographic range evaluated in this species to date (~37-51°N). Here, we confirmed previous observations of northern and southern groups, but we show that the boundary between northern and southern clusters is not a discrete latitudinal break. Instead, at latitudes near the previously described boundary, we found unexpected patterns of fine-scale genetic structure occurring between inshore and offshore sites. Scallops from offshore sites, including St. Pierre Bank and the eastern Scotian Shelf, clustered with southern stocks, whereas inshore sites at similar latitudes clustered with northern stocks. Our analyses revealed significant genetic divergence across small spatial scales (i.e., 129-221 km distances), and that spatial structure over large and fine scales was strongly associated with temperature during seasonal periods of thermal minima. Clear temperature differences between inshore and offshore locations may explain the fine-scale structuring observed, such as why southern lineages of scallop occur at higher latitudes in deeper, warmer offshore waters. Our study supports growing evidence that fine-scale population structure in marine species is common, often environmentally associated, and that consideration of environmental and genomic data can significantly enhance the identification of marine diversity and management units.


Assuntos
Organismos Aquáticos/genética , Variação Genética , Genética Populacional , Pectinidae/genética , Animais , Organismos Aquáticos/fisiologia , Oceano Atlântico , Canadá , Ecossistema , Pectinidae/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Temperatura
13.
J Fish Biol ; 94(1): 154-164, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30552668

RESUMO

A survey of the Kapisillit River system was conducted in 2005 and 2012 to study the only indigenous Atlantic salmon Salmo salar population in Greenland. Little is known about its characteristics or its relationship with other S. salar populations across the species range. Juvenile S. salar were captured in all stations surveyed within the lower river with the highest densities lower in the river and decreasing densities with increasing distance from the river mouth. Captured juveniles ranged from 0+ to 7+ years old and the predominant smolt age was between 4 and 6 years. Median length of 0+ and 1+ juveniles in August-September was 38.8 and 70.4 mm, respectively. The proportion of mature male parr increased from 4% for 1+ year old fish to 95% for fish greater than 2 years old. Genetic analysis using 96 single nucleotide polymorphisms (SNP) revealed a high degree of genetic similarity between collections, extremely low genetic diversity and low estimates of effective population size (Ne = 28.7; 95% CI = 19.7-42.4). Genetic comparison to range-wide S. salar populations demonstrated that the Kapisillit River S. salar is an outgroup of the eastern Atlantic stock complex, which is consistent with the hypothesised colonisation from the east. River morphology and the absence of glacier runoff are hypothesised to be the main reasons for the relatively high river temperatures supporting this self-sustaining population of S. salar. Given its uniqueness and persistence, this population represents an important part of range-wide biodiversity of S. salar.


Assuntos
Salmo salar/genética , Animais , Comportamento Animal , Biodiversidade , Comportamento Alimentar , Variação Genética , Groenlândia , Masculino , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Rios/química , Salmo salar/crescimento & desenvolvimento , Salmo salar/fisiologia , Temperatura
14.
Mol Ecol ; 27(2): 339-351, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29193392

RESUMO

Intraspecific diversity is central to the management and conservation of exploited species, yet knowledge of how this diversity is distributed and maintained in the genome of many marine species is lacking. Recent advances in genomic analyses allow for genome-wide surveys of intraspecific diversity and offer new opportunities for exploring genomic patterns of divergence. Here, we analysed genome-wide polymorphisms to measure genetic differentiation between an offshore migratory and a nonmigratory population and to define conservation units of Atlantic Cod (Gadus morhua) in coastal Labrador. A total of 141 individuals, collected from offshore sites and from a coastal site within Gilbert Bay, Labrador, were genotyped using an ~11k single nucleotide polymorphism array. Analyses of population structure revealed strong genetic differentiation between migratory offshore cod and nonmigratory Gilbert Bay cod. Genetic differentiation was elevated for loci within a chromosomal rearrangement found on linkage group 1 (LG1) that coincides with a previously found double inversion associated with migratory and nonmigratory ecotype divergence of cod in the northeast Atlantic. This inverted region includes several genes potentially associated with adaptation to differences in salinity and temperature, as well as influencing migratory behaviour. Our work provides evidence that a chromosomal rearrangement on LG1 is associated with parallel patterns of divergence between migratory and nonmigratory ecotypes on both sides of the Atlantic Ocean.


Assuntos
Gadus morhua/genética , Variação Genética/genética , Genética Populacional , Genoma/genética , Aclimatação/genética , Aclimatação/fisiologia , Adaptação Fisiológica , Migração Animal , Animais , Aberrações Cromossômicas , Inversão Cromossômica/genética , Ecótipo , Gadus morhua/fisiologia , Humanos , Polimorfismo de Nucleotídeo Único/genética
15.
Mol Ecol ; 27(20): 4026-4040, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30152128

RESUMO

Conservation of exploited species requires an understanding of both genetic diversity and the dominant structuring forces, particularly near range limits, where climatic variation can drive rapid expansions or contractions of geographic range. Here, we examine population structure and landscape associations in Atlantic salmon (Salmo salar) across a heterogeneous landscape near the northern range limit in Labrador, Canada. Analysis of two amplicon-based data sets containing 101 microsatellites and 376 single nucleotide polymorphisms (SNPs) from 35 locations revealed clear differentiation between populations spawning in rivers flowing into a large marine embayment (Lake Melville) compared to coastal populations. The mechanisms influencing the differentiation of embayment populations were investigated using both multivariate and machine-learning landscape genetic approaches. We identified temperature as the strongest correlate with genetic structure, particularly warm temperature extremes and wider annual temperature ranges. The genomic basis of this divergence was further explored using a subset of locations (n = 17) and a 220K SNP array. SNPs associated with spatial structuring and temperature mapped to a diverse set of genes and molecular pathways, including regulation of gene expression, immune response, and cell development and differentiation. The results spanning molecular marker types and both novel and established methods clearly show climate-associated, fine-scale population structure across an environmental gradient in Atlantic salmon near its range limit in North America, highlighting valuable approaches for predicting population responses to climate change and managing species sustainability.


Assuntos
Genética Populacional/métodos , Repetições de Microssatélites/genética , Salmo salar/genética , Animais , América do Norte , Polimorfismo de Nucleotídeo Único/genética
16.
Mol Ecol ; 25(12): 2691-2, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27306459

RESUMO

Whether marine fishes are capable of homing to their natal areas has long been something of an enigma. For some estuarine species or sharks (which have extended nondispersal juvenile stages or are born as relatively large, fully formed juveniles), the answer is clearly 'yes' (Thorrold et al. ; Feldheim et al. ), but for most marine fishes, the issue is much more mysterious. Many species have free-floating eggs, and most have pelagic, passively dispersing larvae. It is challenging to imagine how adult fish might navigate to a region of the ocean they experienced only as eggs or larvae, and easier to assume that such dispersal leads inexorably to high gene flow, and even panmixia. One way to resolve the conundrum would be to track fish from hatching to reproduction, but for marine fishes with tiny eggs and drifting larvae, this is notoriously difficult to do (Bradbury & Laurel ). In this issue of Molecular Ecology, Bonanomi et al. () use a creative approach to solve this challenge for Atlantic cod (Gadus morhua) populations that mingle in the vicinity of Greenland. They show that cod that disperse more than a 1000 km away from Iceland as eggs and larvae, then spend years growing on the far side of Greenland, while mixing with two local populations, return as adults to spawning areas near Iceland - and further, that this behaviour has remained stable over more than six decades. They manage this feat with a clever use of historical cod tracking data, modern genomic data and genetic analysis of decades-old DNA obtained from archived materials. Their results have important implications for our view of the biocomplexity of marine fish populations, and how we should manage them.


Assuntos
Peixes/genética , Gadus morhua/genética , Animais , Groenlândia , Islândia , Reprodução
17.
Mol Ecol ; 24(20): 5130-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26407171

RESUMO

Identification of discrete and unique assemblages of individuals or populations is central to the management of exploited species. Advances in population genomics provide new opportunities for re-evaluating existing conservation units but comparisons among approaches remain rare. We compare the utility of RAD-seq, a single nucleotide polymorphism (SNP) array and a microsatellite panel to resolve spatial structuring under a scenario of possible trans-Atlantic secondary contact in a threatened Atlantic Salmon, Salmo salar, population in southern Newfoundland. Bayesian clustering indentified two large groups subdividing the existing conservation unit and multivariate analyses indicated significant similarity in spatial structuring among the three data sets. mtDNA alleles diagnostic for European ancestry displayed increased frequency in southeastern Newfoundland and were correlated with spatial structure in all marker types. Evidence consistent with introgression among these two groups was present in both SNP data sets but not the microsatellite data. Asymmetry in the degree of introgression was also apparent in SNP data sets with evidence of gene flow towards the east or European type. This work highlights the utility of RAD-seq based approaches for the resolution of complex spatial patterns, resolves a region of trans-Atlantic secondary contact in Atlantic Salmon in Newfoundland and demonstrates the utility of multiple marker comparisons in identifying dynamics of introgression.


Assuntos
Genética Populacional , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Salmo salar/genética , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Fluxo Gênico , Marcadores Genéticos , Terra Nova e Labrador , Análise de Sequência de DNA , Análise Espacial
18.
Ecol Evol ; 14(4): e11068, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584771

RESUMO

Complex traits often exhibit complex underlying genetic architectures resulting from a combination of evolution from standing variation, hard and soft sweeps, and alleles of varying effect size. Increasingly, studies implicate both large-effect loci and polygenic patterns underpinning adaptation, but the extent that common genetic architectures are utilized during repeated adaptation is not well understood. Sea age or age at maturation represents a significant life history trait in Atlantic Salmon (Salmo salar), the genetic basis of which has been studied extensively in European Atlantic populations, with repeated identification of large-effect loci. However, the genetic basis of sea age within North American Atlantic Salmon populations remains unclear, as does the potential for a parallel trans-Atlantic genomic basis to sea age. Here, we used a large single-nucleotide polymorphism (SNP) array and low-coverage whole-genome resequencing to explore the genomic basis of sea age variation in North American Atlantic Salmon. We found significant associations at the gene and SNP level with a large-effect locus (vgll3) previously identified in European populations, indicating genetic parallelism, but found that this pattern varied based on both sex and geographic region. We also identified nonrepeated sets of highly predictive loci associated with sea age among populations and sexes within North America, indicating polygenicity and low rates of genomic parallelism. Despite low genome-wide parallelism, we uncovered a set of conserved molecular pathways associated with sea age that were consistently enriched among comparisons, including calcium signaling, MapK signaling, focal adhesion, and phosphatidylinositol signaling. Together, our results indicate parallelism of the molecular basis of sea age in North American Atlantic Salmon across large-effect genes and molecular pathways despite population-specific patterns of polygenicity. These findings reveal roles for both contingency and repeated adaptation at the molecular level in the evolution of life history variation.

19.
Proc Biol Sci ; 280(1759): 20130327, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23516247

RESUMO

Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions and evidence. We explore latitudinal differences in (i) biological (e.g. species composition, spawning mode, pelagic larval duration, PLD), (ii) physical (e.g. water movement, habitat fragmentation), and (iii) biophysical factors (primarily temperature, which could strongly affect development, swimming ability or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature and larval swimming, and each difference could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat and geographical region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of 'off the shelf' information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.


Assuntos
Distribuição Animal , Peixes/fisiologia , Animais , Biodiversidade , Ecossistema , Peixes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Reprodução , Temperatura , Movimentos da Água
20.
Evol Appl ; 16(9): 1568-1585, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37752960

RESUMO

Conservation units represent important components of intraspecific diversity that can aid in prioritizing and protecting at-risk populations, while also safeguarding unique diversity that can contribute to species resilience. In Canada, identification and assessments of conservation units is done by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). COSEWIC can recognize conservation units below the species level (termed "designatable units"; DUs) if the unit has attributes that make it both discrete and evolutionarily significant. There are various ways in which a DU can meet criteria of discreteness and significance, and increasing access to "big data" is providing unprecedented information that can directly inform both criteria. Specifically, the incorporation of genomic data for an increasing number of non-model species is informing more COSEWIC assessments; thus, a repeatable, robust framework is needed for integrating these data into DU characterization. Here, we develop a framework that uses a multifaceted, weight of evidence approach to incorporate multiple data types, including genetic and genomic data, to inform COSEWIC DUs. We apply this framework to delineate DUs of Atlantic salmon (Salmo salar, L.), an economically, culturally, and ecologically significant species, that is also characterized by complex hierarchical population structure. Specifically, we focus on an in-depth example of how our approach was applied to a previously data limited region of northern Canada that was defined by a single large DU. Application of our framework with newly available genetic and genomic data led to subdividing this DU into three new DUs. Although our approach was developed to meet criteria of COSEWIC, it is widely applicable given similarities in the definitions of a conservation unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA