RESUMO
Disruption of leptin signalling has been implicated as playing a role in the development of Alzheimer's disease (AD). Leptin has previously been shown to be affected by amyloid-beta (Aß)-related signalling; however, pathways that link leptin to the disease pathogenesis have not been determined. To characterize the association between increasing age-dependent Aß levels with leptin signalling and the vulnerable brain regions in AD, we assessed the mRNA and protein expression profile of leptin and leptin receptor (Ob-Rb) at 9 and 18-month-age in APP/PS1 mice. Immunohistochemical labelling demonstrated that leptin and Ob-Rb proteins were localised to neocortical and hippocampal neurons in APP/PS1 and wildtype (WT) mice. Neuronal leptin and Ob-Rb immunolabelling was more prominent in the neocortex of both groups at 9 month of age, while, at 18 months, labelling was reduced in the hippocampus of APP/PS1 mice relative to WT. Immunoblotting analysis demonstrated decreased hippocampal leptin levels, concomitantly with an increased Ob-Rb levels, in APP/PS1 mice compared with WT controls at 18 month of age. While no leptin mRNA was found in either of the groups analysed, Ob-Rb mRNA was significantly decreased in the hippocampus of APP/PS1 mice at both ages analysed. In addition, a significant decreased protein kinase B (Akt) activity concomitantly with an upregulation of suppressor of cytokine signaling-3 (SOCS3) and protein-tyrosine phosphatase 1B (PTP1B) transcripts was present. Thus, these results collectively indicate alterations of leptin signalling in the hippocampus of APP/PS1 mice, providing novel insights about the pathways that could link aberrant leptin signaling to the pathological changes of AD.