Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Bacteriol ; 194(22): 6300-1, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23105050

RESUMO

Desulfosporosinus species are sulfate-reducing bacteria belonging to the Firmicutes. Their genomes will give insights into the genetic repertoire and evolution of sulfate reducers typically thriving in terrestrial environments and able to degrade toluene (Desulfosporosinus youngiae), to reduce Fe(III) (Desulfosporosinus meridiei, Desulfosporosinus orientis), and to grow under acidic conditions (Desulfosporosinus acidiphilus).


Assuntos
Genoma Bacteriano , Peptococcaceae/classificação , Peptococcaceae/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , Especificidade da Espécie
2.
Proc Natl Acad Sci U S A ; 105(7): 2504-9, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18272490

RESUMO

The central questions of bacterial ecology and evolution require a method to consistently demarcate, from the vast and diverse set of bacterial cells within a natural community, the groups playing ecologically distinct roles (ecotypes). Because of a lack of theory-based guidelines, current methods in bacterial systematics fail to divide the bacterial domain of life into meaningful units of ecology and evolution. We introduce a sequence-based approach ("ecotype simulation") to model the evolutionary dynamics of bacterial populations and to identify ecotypes within a natural community, focusing here on two Bacillus clades surveyed from the "Evolution Canyons" of Israel. This approach has identified multiple ecotypes within traditional species, with each predicted to be an ecologically distinct lineage; many such ecotypes were confirmed to be ecologically distinct, with specialization to different canyon slopes with different solar exposures. Ecotype simulation provides a long-needed natural foundation for microbial ecology and systematics.


Assuntos
Bacillus/classificação , Ecologia , Algoritmos , Simulação por Computador , Poluição Ambiental , Dados de Sequência Molecular , Filogenia
3.
Syst Appl Microbiol ; 30(2): 102-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16684595

RESUMO

The type strains of 27 species of the genus Microbacterium, family Microbacteriaceae, were analyzed with respect to the phylogeny of the housekeeping genes coding for DNA gyrase subunit B (gyrB), RNA-polymerase subunit B (rpoB), recombinase A (recA) and polyphosphate kinase (ppk). The resulting gene trees were compared to the 16S rRNA gene phylogeny of the same species. The topology of neighbour-joining and maximum parsimony phylogenetic trees based upon nucleic acid sequences and protein sequences of housekeeping genes differed among each other and no gene tree was identical to that of the 16S rRNA gene tree. Only some species showed consistent clustering by all genes analyzed, but the majority of species branched with different neighbours in most gene trees. The failure to phylogenetically cluster type strains into two groups based upon differences in the amino acid composition of peptidoglycan on the basis of 16S rRNA gene sequence similarity, once leading to the union of the genera Microbacterium and Aureobacterium, was also seen in the analysis of recA, rpoB and gyrB gene and protein phylogenies. Analysis of the pkk gene and protein as well as of a concatenate tree, combining sequences of all five genes (total of 3.700 nucleotides), sees members of the former genus Aureobacterium and other type strains with lysine as diagnostic diamino acid to form a coherent cluster that branches within the radiation of Microbacterium species with ornithine in the peptidoglycan.


Assuntos
Actinomycetales/classificação , Actinomycetales/genética , Proteínas de Bactérias/genética , Genes Bacterianos , Genes de RNAr , Peptidoglicano/genética , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Filogenia , RNA Polimerase II/genética , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA , Homologia de Sequência
4.
Stand Genomic Sci ; 12: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775794

RESUMO

The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks. Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti. Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.

5.
J Microbiol Methods ; 60(1): 115-23, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15567231

RESUMO

PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.


Assuntos
Actinomycetales/enzimologia , Actinomycetales/genética , DNA Girase/genética , Reação em Cadeia da Polimerase/métodos , Sequência de Aminoácidos , Sequência de Bases , DNA Girase/química , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Alinhamento de Sequência
6.
Stand Genomic Sci ; 9(2): 359-69, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24976892

RESUMO

Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.

7.
Stand Genomic Sci ; 6(2): 220-9, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768365

RESUMO

Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).

8.
Stand Genomic Sci ; 6(2): 265-75, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768369

RESUMO

Saccharomonospora marina Liu et al. 2010 is a member of the genus Saccharomonospora, in the family Pseudonocardiaceae that is poorly characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they might play a role in the primary degradation of plant material by attacking hemicellulose. Organisms belonging to the genus are usually Gram-positive staining, non-acid fast, and classify among the actinomycetes. Here we describe the features of this organism, together with the complete genome sequence (permanent draft status), and annotation. The 5,965,593 bp long chromosome with its 5,727 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).

9.
Stand Genomic Sci ; 6(2): 155-64, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768359

RESUMO

Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

10.
Stand Genomic Sci ; 6(2): 145-54, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768358

RESUMO

Runella slithyformis Larkin and Williams 1978 is the type species of the genus Runella, which belongs to the Cytophagaceae, a family that was only recently classified to the order Cytophagales in the class Cytophagia. The species is of interest because it is able to grow at temperatures as low as 4°C. This is the first completed genome sequence of a member of the genus Runella and the sixth sequence from the family Cytophagaceae. The 6,919,729 bp long genome consists of a 6.6 Mbp circular genome and five circular plasmids of 38.8 to 107.0 kbp length, harboring a total of 5,974 protein-coding and 51 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

11.
Stand Genomic Sci ; 6(2): 174-84, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768361

RESUMO

Holophaga foetida Liesack et al. 1995 is a member of the phylum Acidobacteria and is of interest for its ability to anaerobically degrade aromatic compounds and for its production of volatile sulfur compounds through a unique pathway. The genome of H. foetida strain TMBS4(T) is the first to be sequenced for a representative of the class Holophagae. Here we describe the features of this organism, together with the complete genome sequence (improved high quality draft), and annotation. The 4,127,237 bp long chromosome with its 3,615 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

12.
Stand Genomic Sci ; 6(2): 185-93, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768362

RESUMO

Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of interest because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes. The genome, which consists of a circular chromosome of 3,842,422 bp length with a total of 3,478 protein-coding and 47 RNA genes, is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

13.
Stand Genomic Sci ; 6(2): 194-209, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768363

RESUMO

Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately anaerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut contents of the termite Neotermes castaneus. The species is of interest because it may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1(T), and based on physiological and genomic characteristics, we propose its reclassification as a novel species in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 2,227,296 bp long genome of strain SPN1(T) with its 1,866 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

14.
Stand Genomic Sci ; 6(2): 210-9, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768364

RESUMO

Saprospira grandis Gross 1911 is a member of the Saprospiraceae, a family in the class 'Sphingobacteria' that remains poorly characterized at the genomic level. The species is known for preying on other marine bacteria via 'ixotrophy'. S. grandis strain Sa g1 was isolated from decaying crab carapace in France and was selected for genome sequencing because of its isolated location in the tree of life. Only one type strain genome has been published so far from the Saprospiraceae, while the sequence of strain Sa g1 represents the second genome to be published from a non-type strain of S. grandis. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,495,250 bp long Improved-High-Quality draft of the genome with its 3,536 protein-coding and 62 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

15.
Stand Genomic Sci ; 6(2): 230-9, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768366

RESUMO

Thermovirga lienii Dahle and Birkeland 2006 is a member of the genus Thermovirga in the genomically moderately well characterized phylum 'Synergistetes'. Members of this relatively recently proposed phylum 'Synergistetes' are of interest because of their isolated phylogenetic position and their diverse habitats, e.g. from humans to oil wells. The genome of T. lienii Cas60314(T) is the fifth genome sequence (third completed) from this phylum to be published. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,999,646 bp long genome (including one plasmid) with its 1,914 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

16.
Stand Genomic Sci ; 6(2): 240-50, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768367

RESUMO

Deinococcus proteolyticus (ex Kobatake et al. 1973) Brook and Murray 1981 is one of currently 47 species in the genus Deinococcus within the family Deinococcaceae. Strain MRP(T) was isolated from feces of Lama glama and possesses extreme radiation resistance, a trait is shares with various other species of the genus Deinococcus, with D. proteolyticus being resistant up to 1.5 Mrad of gamma radiation. Strain MRP(T) is of further interest for its carotenoid pigment. The genome presented here is only the fifth completed genome sequence of a member of the genus Deinococcus (and the forth type strain) to be published, and will hopefully contribute to a better understanding of how members of this genus adapted to high gamma- or UV ionizing-radiation. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,886,836 bp long genome with its four large plasmids of lengths 97 kbp, 132 kbp, 196 kbp and 315 kbp harbors 2,741 protein-coding and 58 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

17.
Stand Genomic Sci ; 6(1): 21-30, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675595

RESUMO

Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1(T) was the first isolate within the phylum "Thermus-Deinococcus" to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1(T) is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

18.
Stand Genomic Sci ; 6(1): 94-103, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675602

RESUMO

Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic genus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class Epsilonproteobacteria. The species is of interest because it is frequently found in crude oil and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, sulfide and thiosulfate as electron donors. Members of the species do not utilize sugars, organic acids or hydrocarbons as carbon and energy sources. This genome sequence represents the type strain of the only species in the genus Sulfuricurvum. The genome, which consists of a circular chromosome of 2,574,824 bp length and four plasmids of 118,585 bp, 71,513 bp, 51,014 bp, and 3,421 bp length, respectively, harboring a total of 2,879 protein-coding and 61 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

19.
Stand Genomic Sci ; 4(2): 144-53, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21677851

RESUMO

Riemerella anatipestifer (Hendrickson and Hilbert 1932) Segers et al. 1993 is the type species of the genus Riemerella, which belongs to the family Flavobacteriaceae. The species is of interest because of the position of the genus in the phylogenetic tree and because of its role as a pathogen of commercially important avian species worldwide. This is the first completed genome sequence of a member of the genus Riemerella. The 2,155,121 bp long genome with its 2,001 protein-coding and 51 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

20.
Stand Genomic Sci ; 4(2): 163-72, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21677853

RESUMO

Deinococcus maricopensis (Rainey and da Costa 2005) is a member of the genus Deinococcus, which is comprised of 44 validly named species and is located within the deeply branching bacterial phylum Deinococcus-Thermus. Strain LB-34(T) was isolated from a soil sample from the Sonoran Desert in Arizona. Various species of the genus Deinococcus are characterized by extreme radiation resistance, with D. maricopensis being resistant in excess of 10 kGy. Even though the genomes of three Deinococcus species, D. radiodurans, D. geothermalis and D. deserti, have already been published, no special physiological characteristic is currently known that is unique to this group. It is therefore of special interest to analyze the genomes of additional species of the genus Deinococcus to better understand how these species adapted to gamma- or UV ionizing-radiation. The 3,498,530 bp long genome of D. maricopensis with its 3,301 protein-coding and 66 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA