RESUMO
BACKGROUND: There are no specific, evidence-based recommendations for the management of individuals with radiologically isolated syndrome. Imaging and blood biomarkers may have prognostic utility. OBJECTIVE: To determine whether plasma neurofilament light protein (NfL) or glial fibrillary acidic protein (GFAP) levels in people with radiologically isolated syndrome correlate with imaging measures that have been shown to be associated with negative clinical outcomes in people with multiple sclerosis. METHODS: Cross-sectional analysis of people with radiologically isolated syndrome. Participants underwent magnetic resonance imaging (MRI) of the brain and cervical spinal cord, and plasma was collected. Plasma NfL and GFAP levels were measured with a single-molecule array, and correlations with MRI measures were assessed, including the number of: T1-black holes, white-matter lesions demonstrating the central vein sign, paramagnetic rim lesions, cervical spinal cord lesions and infratentorial lesions. RESULTS: Plasma GFAP levels, but not NfL levels, showed correlations with the number of T1-black holes, white matter lesions demonstrating the central vein sign and paramagnetic rim lesions (all p < 0.05). CONCLUSION: We found correlations between plasma GFAP levels and imaging measures associated with poor clinical outcomes and chronic inflammation in individuals with radiologically isolated syndrome. Plasma GFAP may have prognostic utility in clinical trials and clinical practice.
Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Humanos , Biomarcadores , Estudos Transversais , Doenças Desmielinizantes/diagnóstico por imagem , Proteína Glial Fibrilar Ácida , Filamentos Intermediários/patologia , Esclerose Múltipla/diagnóstico , Proteínas de NeurofilamentosRESUMO
Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.
Assuntos
Alelos , Ácido Aspártico/metabolismo , Encefalopatias/genética , Proteínas de Ligação a Ácido Graxo/genética , Malatos/metabolismo , Mutação , Animais , Criança , Pré-Escolar , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Sequenciamento do ExomaRESUMO
We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Ataxia/genética , Deficiências do Desenvolvimento/genética , Glutaminase/deficiência , Glutaminase/genética , Glutamina/metabolismo , Repetições de Microssatélites , Mutação , Atrofia/genética , Cerebelo/patologia , Pré-Escolar , Feminino , Genótipo , Glutamina/análise , Humanos , Masculino , Fenótipo , Reação em Cadeia da Polimerase , Sequenciamento Completo do GenomaRESUMO
Cardiac hypertrophy is a compensatory response to pathological stimuli, ultimately progresses to cardiomyopathy, heart failure, or sudden death. Although many signaling pathways have been reported to be involved in the hypertrophic process, it is still not fully clear about the underlying molecular mechanisms for cardiac hypertrophy. Hedgehog acyltransferase-like (Hhatl), a sarcoplasmic reticulum-resident protein, exhibits high expression in the heart and muscle. However, the biological role of Hhatl in the heart remains unknown. In this study, we first found that the expression level of Hhatl is markedly decreased in cardiac hypertrophy. We further studied the role of hhatla, homolog of Hhatl with the zebrafish model. The depletion of hhatla in zebrafish leads to cardiac defects, as well as an enhanced level of hypertrophic markers. Besides, we found that calcineurin signaling participates in hhatla depletion-induced cardiac hypertrophy. Together, these results demonstrate a critical role for hhatla in cardiac hypertrophy.
Assuntos
Aciltransferases/metabolismo , Cardiomegalia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Aciltransferases/genética , Animais , Biomarcadores/metabolismo , Calcineurina/metabolismo , Cardiomegalia/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica , Ventrículos do Coração/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Genomics methodologies have significantly improved elucidation of Mendelian disorders. The combination with high-throughput functional-omics technologies potentiates the identification and confirmation of causative genetic variants, especially in singleton families of recessive inheritance. In a cohort of 99 individuals with abnormal Golgi glycosylation, 47 of which being unsolved, glycomics profiling was performed of total plasma glycoproteins. Combination with whole-exome sequencing in 31 cases revealed a known genetic defect in 15 individuals. To identify additional genetic factors, hierarchical clustering of the plasma glycomics data was done, which indicated a subgroup of four patients that shared a unique glycomics signature of hybrid type N-glycans. In two siblings, compound heterozygous mutations were found in SLC10A7, a gene of unknown function in human. These included a missense mutation that disrupted transmembrane domain 4 and a mutation in a splice acceptor site resulting in skipping of exon 9. The two other individuals showed a complete loss of SLC10A7 mRNA. The patients' phenotype consisted of amelogenesis imperfecta, skeletal dysplasia, and decreased bone mineral density compatible with osteoporosis. The patients' phenotype was mirrored in SLC10A7 deficient zebrafish. Furthermore, alizarin red staining of calcium deposits in zebrafish morphants showed a strong reduction in bone mineralization. Cell biology studies in fibroblasts of affected individuals showed intracellular mislocalization of glycoproteins and a defect in post-Golgi transport of glycoproteins to the cell membrane. In contrast to yeast, human SLC10A7 localized to the Golgi. Our combined data indicate an important role for SLC10A7 in bone mineralization and transport of glycoproteins to the extracellular matrix.
Assuntos
Doenças do Desenvolvimento Ósseo/etiologia , Calcificação Fisiológica , Defeitos Congênitos da Glicosilação/complicações , Genômica , Glicômica , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Simportadores/genética , Adulto , Animais , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Células Cultivadas , Estudos de Coortes , Exoma , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Lactente , Masculino , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Linhagem , Fenótipo , Transporte Proteico , Simportadores/metabolismo , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismoRESUMO
Heart failure is a complex pathophysiological syndrome of pumping functional failure that results from injury, infection or toxin-induced damage on the myocardium, as well as genetic influence. Gene mutations associated with cardiomyopathies can lead to various pathologies of heart failure. In recent years, zebrafish, Danio rerio, has emerged as an excellent model to study human cardiovascular diseases such as congenital heart defects, cardiomyopathy, and preclinical development of drugs targeting these diseases. In this review, we will first summarize zebrafish genetic models of heart failure arose from cardiomyopathy, which is caused by mutations in sarcomere, calcium or mitochondrial-associated genes. Moreover, we outline zebrafish heart failure models triggered by chemical compounds. Elucidation of these models will improve the understanding of the mechanism of pathogenesis and provide potential targets for novel therapies.
Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Miocárdio , Peixe-Zebra , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
The sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin was recently reported to reduce heart failure-associated hospitalizations and cardiovascular mortality amongst individuals with type 2 diabetes at high cardiovascular risk. We sought to elucidate the underlying mechanism(s) for these protective effects using a validated zebrafish heart failure model to evaluate the impact of empagliflozin on the expression of biomarkers of heart failure and mortality. We used aristolochic acid (AA) to induce heart failure in developing cmlc2::GFP transgenic zebrafish embryos and monitored BNP signaling in nppb::Luc transgenic zebrafish with a luciferase reporter assay. Empagliflozin markedly reduced the morphological and functional cardiac changes induced by AA; dampened AA-enhanced expression of brain natriuretic peptide and atrial natriuretic peptide; and reduced embryonic mortality. Furthermore, morpholino-mediated knockdown of the slc5A2 gene mimicked the changes evoked by empagliflozin in developing zebrafish embryos previously exposed to AA. We report herein the first mechanistic data demonstrating a salutary benefit of SGLT2 inhibition on critical pathways of heart failure signaling. These findings provide important translational clues to the cardiovascular benefits documented in the EMPA-REG OUTCOME study.
Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Insuficiência Cardíaca , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Ácidos Aristolóquicos/farmacologia , Ácidos Aristolóquicos/toxicidade , Biomarcadores/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Peixe-Zebra/genéticaRESUMO
Rapid electrical conduction in the His-Purkinje system tightly controls spatiotemporal activation of the ventricles. Although recent work has shed much light on the regulation of early specification and morphogenesis of the His-Purkinje system, less is known about how transcriptional regulation establishes impulse conduction properties of the constituent cells. Here we show that Iroquois homeobox gene 3 (Irx3) is critical for efficient conduction in this specialized tissue by antithetically regulating two gap junction-forming connexins (Cxs). Loss of Irx3 resulted in disruption of the rapid coordinated spread of ventricular excitation, reduced levels of Cx40, and ectopic Cx43 expression in the proximal bundle branches. Irx3 directly represses Cx43 transcription and indirectly activates Cx40 transcription. Our results reveal a critical role for Irx3 in the precise regulation of intercellular gap junction coupling and impulse propagation in the heart.
Assuntos
Fascículo Atrioventricular/fisiologia , Sistema de Condução Cardíaco , Proteínas de Homeodomínio/fisiologia , Ramos Subendocárdicos/fisiologia , Fatores de Transcrição/fisiologia , Animais , Conexina 43/genética , Conexinas/genética , Junções Comunicantes , Regulação da Expressão Gênica , Genes Homeobox , Ventrículos do Coração , Camundongos , Transcrição GênicaRESUMO
Experimental autoimmune encephalomyelitis (EAE) is a common immune-based model of multiple sclerosis (MS). This disease can be induced in rodents by active immunization with protein components of the myelin sheath and Complete Freund's adjuvant (CFA) or by the transfer of myelin-specific T effector cells from rodents primed with myelin protein/CFA into naïve rodents. The severity of EAE is typically scored on a 5-point clinical scale that measures the degree of ascending paralysis, but this scale is not optimal for assessing the extent of recovery from EAE. For example, clinical scores remain high in some EAE models (e.g., myelin oligodendrocyte glycoprotein [MOG] peptide-induced model of EAE) despite the resolution of inflammation. Thus, it is important to complement clinical scoring with histological scoring of EAE, which also provides a means to study the underlying mechanisms of cellular injury in the central nervous system (CNS). Here, a simple protocol is presented to prepare and stain spinal cord and brain sections from mice and to score inflammation, demyelination, and axonal injury in the spinal cord. The method for scoring leukocyte infiltration in the spinal cord can also be applied to score brain inflammation in EAE. A protocol for measuring soluble neurofilament light (sNF-L) in the serum of mice using a Small Molecule Assay (SIMOA) assay is also described, which provides feedback on the extent of overall CNS injury in live mice.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Esclerose Múltipla/patologia , Medula Espinal/patologia , Inflamação/patologia , Axônios/patologia , Glicoproteína Mielina-Oligodendrócito , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/efeitos adversosRESUMO
Electrical cardiac forces have been previously hypothesized to play a significant role in cardiac morphogenesis and remodeling. In response to electrical forces, cultured cardiomyocytes rearrange their cytoskeletal structure and modify their gene expression profile. To translate such in vitro data to the intact heart, we used a collection of zebrafish cardiac mutants and transgenics to investigate whether cardiac conduction could influence in vivo cardiac morphogenesis independent of contractile forces. We show that the cardiac mutant dco(s226) develops heart failure and interrupted cardiac morphogenesis following uncoordinated ventricular contraction. Using in vivo optical mapping/calcium imaging, we determined that the dco cardiac phenotype was primarily due to aberrant ventricular conduction. Because cardiac contraction and intracardiac hemodynamic forces can also influence cardiac development, we further analyzed the dco phenotype in noncontractile hearts and observed that disorganized ventricular conduction could affect cardiomyocyte morphology and subsequent heart morphogenesis in the absence of contraction or flow. By positional cloning, we found that dco encodes Gja3/Cx46, a gap junction protein not previously implicated in heart formation or function. Detailed analysis of the mouse Cx46 mutant revealed the presence of cardiac conduction defects frequently associated with human heart failure. Overall, these in vivo studies indicate that cardiac electrical forces are required to preserve cardiac chamber morphology and may act as a key epigenetic factor in cardiac remodeling.
Assuntos
Embrião não Mamífero/fisiologia , Sistema de Condução Cardíaco/fisiologia , Coração/fisiologia , Miocárdio/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Conexinas/classificação , Conexinas/genética , Conexinas/metabolismo , Eletrocardiografia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/fisiologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Coração/embriologia , Hibridização In Situ , Camundongos , Camundongos Knockout , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Filogenia , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
CTCF nuclear factor regulates many aspects of gene expression, largely as a transcriptional repressor or via insulator function. Its roles in cellular differentiation are not clear. Here we show an unexpected role for CTCF in myogenesis. Ctcf is expressed in myogenic structures during mouse and zebrafish development. Gain- and loss-of-function approaches in C2C12 cells revealed CTCF as a modulator of myogenesis by regulating muscle-specific gene expression. We addressed the functional connection between CTCF and myogenic regulatory factors (MRFs). CTCF enhances the myogenic potential of MyoD and myogenin and establishes direct interactions with MyoD, indicating that CTCF regulates MRF-mediated muscle differentiation. Indeed, CTCF modulates functional interactions between MyoD and myogenin in co-activation of muscle-specific gene expression and facilitates MyoD recruitment to a muscle-specific promoter. Finally, ctcf loss-of-function experiments in zebrafish embryos revealed a critical role of CTCF in myogenic development and linked CTCF to broader aspects of development via regulation of Wnt signaling. We conclude that CTCF modulates MRF functional interactions in the orchestration of myogenesis.
Assuntos
Desenvolvimento Muscular/fisiologia , Fatores de Regulação Miogênica/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fator de Ligação a CCCTC , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Imunoprecipitação , Hibridização In Situ , Camundongos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/genética , Miogenina/genética , Miogenina/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA Interferente Pequeno , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somitos/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.
Assuntos
Inibidores da Angiogênese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Peixe-ZebraRESUMO
Parkinson's disease neurodegenerative brain tissue exhibits two biophysically distinct α-synuclein fiber isoforms-single stranded fibers that appear to be steric-zippers and double-stranded fibers with an undetermined structure. Herein, we describe a ß-helical homology model of α-synuclein that exhibits stability in probabilistic and Monte Carlo simulations as a candidate for stable prional dimer conformers in equilibrium with double-stranded fibers and cytotoxic pore assemblies. Molecular models of ß-helical pore assemblies are consistent with α-synucleinA53T transfected rat immunofluorescence epitope maps. Atomic force microscopy reveals that α-synuclein peptides aggregate into anisotropic fibrils lacking the density or circumference of a steric-zipper. Moreover, fibrillation was blocked by mutations designed to hinder ß-helical but not steric-zipper conformations. ß-helical species provide a structural basis for previously described biophysical properties that are incompatible with a steric-zipper, provide pathogenic mechanisms for familial human α-synuclein mutations, and offer a direct cytotoxic target for therapeutic development.
RESUMO
Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.
Assuntos
Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Edema Cardíaco/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Células HEK293 , Hexosaminas/metabolismo , Humanos , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Doenças Musculares/fisiopatologia , Mutação , Oxo-Ácido-Liases/uso terapêutico , Doença do Armazenamento de Ácido Siálico/metabolismo , Adulto Jovem , Peixe-Zebra/embriologiaRESUMO
Cardiac development in vertebrates is a finely tuned process regulated by a set of conserved signaling pathways. Perturbations of these processes are often associated with congenital cardiac malformations. Platelet-derived growth factor receptor α (PDGFRα) is a highly conserved tyrosine kinase receptor, which is essential for development and organogenesis. Disruption of Pdgfrα function in murine models is embryonic lethal due to severe cardiovascular defects, suggesting a role in cardiac development, thus necessitating the use of alternative models to explore its precise function. In this study, we generated a zebrafish pdgfra mutant line by gene trapping, in which the Pdgfra protein is truncated and fused with mRFP (Pdgfra-mRFP). Our results demonstrate that pdgfra mutants have defects in cardiac morphology as a result of abnormal fusion of myocardial precursors. Expression analysis of the developing heart at later stages suggested that Pdgfra-mRFP is expressed in the endocardium. Further examination of the endocardium in pdgfra mutants revealed defective endocardial migration to the midline, where cardiac fusion eventually occurs. Together, our data suggests that pdgfra is required for proper medial migration of both endocardial and myocardial precursors, an essential step required for cardiac assembly and development.
RESUMO
We identified biallelic mutations in NANS, the gene encoding the synthase for N-acetylneuraminic acid (NeuNAc; sialic acid), in nine individuals with infantile-onset severe developmental delay and skeletal dysplasia. Patient body fluids showed an elevation in N-acetyl-D-mannosamine levels, and patient-derived fibroblasts had reduced NANS activity and were unable to incorporate sialic acid precursors into sialylated glycoproteins. Knockdown of nansa in zebrafish embryos resulted in abnormal skeletal development, and exogenously added sialic acid partially rescued the skeletal phenotype. Thus, NANS-mediated synthesis of sialic acid is required for early brain development and skeletal growth. Normal sialylation of plasma proteins was observed in spite of NANS deficiency. Exploration of endogenous synthesis, nutritional absorption, and rescue pathways for sialic acid in different tissues and developmental phases is warranted to design therapeutic strategies to counteract NANS deficiency and to shed light on sialic acid metabolism and its implications for human nutrition.
Assuntos
Doenças do Desenvolvimento Ósseo/patologia , Encéfalo/embriologia , Deficiências do Desenvolvimento/patologia , Mutação/genética , Oxo-Ácido-Liases/genética , Ácidos Siálicos/metabolismo , Peixe-Zebra/embriologia , Adulto , Idade de Início , Animais , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
Transport of chloride through the cystic fibrosis transmembrane conductance regulator (CFTR) channel is a key step in regulating fluid secretion in vertebrates [1, 2]. Loss of CFTR function leads to cystic fibrosis [1, 3, 4], a disease that affects the lungs, pancreas, liver, intestine, and vas deferens. Conversely, uncontrolled activation of the channel leads to increased fluid secretion and plays a major role in several diseases and conditions including cholera [5, 6] and other secretory diarrheas [7] as well as polycystic kidney disease [8-10]. Understanding how CFTR activity is regulated in vivo has been limited by the lack of a genetic model. Here, we used a forward genetic approach in zebrafish to uncover CFTR regulators. We report the identification, isolation, and characterization of a mutation in the zebrafish cse1l gene that leads to the sudden and dramatic expansion of the gut tube. We show that this phenotype results from a rapid accumulation of fluid due to the uncontrolled activation of the CFTR channel. Analyses in zebrafish larvae and mammalian cells indicate that Cse1l is a negative regulator of CFTR-dependent fluid secretion. This work demonstrates the importance of fluid homeostasis in development and establishes the zebrafish as a much-needed model system to study CFTR regulation in vivo.
Assuntos
Líquidos Corporais/metabolismo , Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Trato Gastrointestinal/metabolismo , Homeostase/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Cães , Trato Gastrointestinal/anormalidades , Trato Gastrointestinal/embriologia , Genes Recessivos , Proteínas de Fluorescência Verde , Imunoprecipitação , Microscopia Confocal , Mutação/genética , Peixe-ZebraRESUMO
The bioactive lipid sphingosine 1-phosphate (S1P) and its G protein-coupled receptors play critical roles in cardiovascular, immunological, and neural development and function. Despite its importance, many questions remain about S1P signaling, including how S1P, which is synthesized intracellularly, is released from cells. Mutations in the zebrafish gene encoding the S1P receptor Miles Apart (Mil)/S1P(2) disrupt the formation of the primitive heart tube. We find that mutations of another zebrafish locus, two of hearts (toh), cause phenotypes that are morphologically indistinguishable from those seen in mil/s1p2 mutants. Positional cloning of toh reveals that it encodes a member of the Spinster-like family of putative transmembrane transporters. The biological functions of these proteins are poorly understood, although phenotypes of the Drosophila spinster and zebrafish not really started mutants suggest that these proteins may play a role in lipid trafficking. Through gain- and loss-of-function analyses, we show that toh is required for signaling by S1P(2). Further evidence indicates that Toh is involved in the trafficking or cellular release of S1P.