Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 601(7893): 446-451, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937935

RESUMO

Exosomes and other small extracellular vesicles (sEVs) provide a unique mode of cell-to-cell communication in which microRNAs (miRNAs) produced and released from one cell are taken up by cells at a distance where they can enact changes in gene expression1-3. However, the mechanism by which miRNAs are sorted into exosomes/sEVs or retained in cells remains largely unknown. Here we demonstrate that miRNAs possess sorting sequences that determine their secretion in sEVs (EXOmotifs) or cellular retention (CELLmotifs) and that different cell types, including white and brown adipocytes, endothelium, liver and muscle, make preferential use of specific sorting sequences, thus defining the sEV miRNA profile of that cell type. Insertion or deletion of these CELLmotifs or EXOmotifs in a miRNA increases or decreases retention in the cell of production or secretion into exosomes/sEVs. Two RNA-binding proteins, Alyref and Fus, are involved in the export of miRNAs carrying one of the strongest EXOmotifs, CGGGAG. Increased miRNA delivery mediated by EXOmotifs leads to enhanced inhibition of target genes in distant cells. Thus, this miRNA code not only provides important insights that link circulating exosomal miRNAs to tissues of origin, but also provides an approach for improved targeting in RNA-mediated therapies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Adipócitos/citologia , Comunicação Celular , Endotélio/citologia , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Fígado/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculos/citologia
2.
Proc Natl Acad Sci U S A ; 117(38): 23932-23941, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900951

RESUMO

DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.


Assuntos
Tecido Adiposo/metabolismo , RNA Helicases DEAD-box/metabolismo , Exercício Físico/fisiologia , Ribonuclease III/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adaptação Fisiológica/fisiologia , Adipócitos/metabolismo , Animais , Células Cultivadas , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Feminino , Glicólise , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Condicionamento Físico Animal , Ribonuclease III/deficiência , Ribonuclease III/genética
3.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072788

RESUMO

The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.


Assuntos
Tecido Adiposo/embriologia , Tecido Adiposo/fisiologia , Termogênese , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo Bege/fisiologia , Tecido Adiposo Marrom/fisiologia , Envelhecimento/metabolismo , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Metabolismo Energético , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Redes e Vias Metabólicas , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/terapia , Organogênese , Termogênese/efeitos dos fármacos , Termogênese/fisiologia
4.
Nat Commun ; 14(1): 57, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599833

RESUMO

Insulin acts through the insulin receptor (IR) tyrosine kinase to exert its classical metabolic and mitogenic actions. Here, using receptors with either short or long deletion of the ß-subunit or mutation of the kinase active site (K1030R), we have uncovered a second, previously unrecognized IR signaling pathway that is intracellular domain-dependent, but ligand and tyrosine kinase-independent (LYK-I). These LYK-I actions of the IR are linked to changes in phosphorylation of a network of proteins involved in the regulation of extracellular matrix organization, cell cycle, ATM signaling and cellular senescence; and result in upregulation of expression of multiple extracellular matrix-related genes and proteins, down-regulation of immune/interferon-related genes and proteins, and increased sensitivity to apoptosis. Thus, in addition to classical ligand and tyrosine kinase-dependent (LYK-D) signaling, the IR regulates a second, ligand and tyrosine kinase-independent (LYK-I) pathway, which regulates the cellular machinery involved in senescence, matrix interaction and response to extrinsic challenges.


Assuntos
Apoptose , Divisão Celular , Senescência Celular , Proteínas Tirosina Quinases , Receptor de Insulina , Apoptose/genética , Divisão Celular/genética , Insulina/metabolismo , Ligantes , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Senescência Celular/genética , Humanos , Animais , Camundongos
5.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548088

RESUMO

Insulin and IGF-1 receptors (IR and IGF1R) are highly homologous and share similar signaling systems, but each has a unique physiological role, with IR primarily regulating metabolic homeostasis and IGF1R regulating mitogenic control and growth. Here, we show that replacement of a single amino acid at position 973, just distal to the NPEY motif in the intracellular juxtamembrane region, from leucine, which is highly conserved in IRs, to phenylalanine, the highly conserved homologous residue in IGF1Rs, resulted in decreased IRS-1/PI3K/Akt/mTORC1 signaling and increased Shc/Gab1/MAPK cell cycle signaling. As a result, cells expressing L973F-IR exhibited decreased insulin-induced glucose uptake, increased cell growth, and impaired receptor internalization. Mice with knockin of the L973F-IR showed similar alterations in signaling in vivo, and this led to decreased insulin sensitivity, a modest increase in growth, and decreased weight gain when mice were challenged with a high-fat diet. Thus, leucine-973 in the juxtamembrane region of the IR acts as a crucial residue differentiating IR signaling from IGF1R signaling.


Assuntos
Insulina , Receptor IGF Tipo 1 , Receptor de Insulina , Transdução de Sinais , Animais , Camundongos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Leucina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Humanos
6.
Mol Metab ; 64: 101558, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35872305

RESUMO

OBJECTIVE: Cellular senescence, an irreversible proliferative cell arrest, is caused by excessive intracellular or extracellular stress/damage. Increased senescent cells have been identified in multiple tissues in different metabolic and other aging-related diseases. Recently, several human and mouse studies emphasized the involvement of senescence in development and progression of NAFLD. Hyperinsulinemia, seen in obesity, metabolic syndrome, and other conditions of insulin resistance, has been linked to senescence in adipocytes and neurons. Here, we investigate the possible direct role of chronic hyperinsulinemia in the development of senescence in human hepatocytes. METHODS: Using fluorescence microscopy, immunoblotting, and gene expression, we tested senescence markers in human hepatocytes subjected to chronic hyperinsulinemia in vitro and validated the data in vivo by using liver-specific insulin receptor knockout (LIRKO) mice. The consequences of hyperinsulinemia were also studied in senescent hepatocytes following doxorubicin as a model of stress-induced senescence. Furthermore, the effects of senolytic agents in insulin- and doxorubicin-treated cells were analyzed. RESULTS: Results showed that exposing the hepatocytes to prolonged hyperinsulinemia promotes the onset of senescence by increasing the expression of p53 and p21. It also further enhanced the senescent phenotype in already senescent hepatocytes. Addition of insulin signaling pathway inhibitors prevented the increase in cell senescence, supporting the direct contribution of insulin. Furthermore, LIRKO mice, in which insulin signaling in the liver is abolished due to deletion of the insulin receptor gene, showed no differences in senescence compared to their wild-type counterparts despite having marked hyperinsulinemia indicating these are receptor-mediated effects. In contrast, the persistent hyperinsulinemia in LIRKO mice enhanced senescence in white adipose tissue. In vitro, senolytic agents dasatinib and quercetin reduced the prosenescent effects of hyperinsulinemia in hepatocytes. CONCLUSION: Our findings demonstrate a direct link between chronic hyperinsulinemia and hepatocyte senescence. This effect can be blocked by reducing the levels of insulin receptors or administration of senolytic drugs, such as dasatinib and quercetin.


Assuntos
Resistência à Insulina , Receptor de Insulina , Animais , Senescência Celular , Dasatinibe/metabolismo , Dasatinibe/farmacologia , Doxorrubicina/farmacologia , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Camundongos , Quercetina/metabolismo , Quercetina/farmacologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
7.
J Clin Invest ; 131(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428182

RESUMO

Insulin and IGF-1 are essential for adipocyte differentiation and function. Mice lacking insulin and IGF-1 receptors in fat (FIGIR-KO, fat-specific IGF-1 receptor and insulin receptor-KO) exhibit complete loss of white and brown adipose tissue (WAT and BAT), glucose intolerance, insulin resistance, hepatosteatosis, and cold intolerance. To determine the role of FOXO transcription factors in the altered adipose phenotype, we generated FIGIR-KO mice with fat-specific KO of fat-expressed Foxos [Foxo1, Foxo3, Foxo4] (F-Quint-KO). Unlike FIGIR-KO mice, F-Quint-KO mice had normal BAT, glucose tolerance, insulin-regulated hepatic glucose production, and cold tolerance. However, loss of FOXOs only partially rescued subcutaneous WAT and hepatosteatosis, did not rescue perigonadal WAT or systemic insulin resistance, and led to even more marked hyperinsulinemia. Thus, FOXOs play different roles in insulin/IGF-1 action in different adipose depots, being most important in BAT, followed by subcutaneous WAT and then by visceral WAT. Disruption of FOXOs in fat also led to a reversal of insulin resistance in liver, but not in skeletal muscle, and an exacerbation of hyperinsulinemia. Thus, adipose FOXOs play a unique role in regulating crosstalk between adipose depots, liver, and ß cells.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Proteína Forkhead Box O1/fisiologia , Insulina/farmacologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Glucose/metabolismo , Insulina/sangue , Células Secretoras de Insulina/patologia , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/fisiologia
8.
Metabolism ; 117: 154723, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549579

RESUMO

BACKGROUND: Obesity, characterized by excessive expansion of white adipose tissue (WAT), is associated with numerous metabolic complications. Conversely, brown adipose tissue (BAT) and beige fat are thermogenic tissues that protect mice against obesity and related metabolic disorders. We recently reported that deletion of miR-22 enhances energy expenditure and attenuates WAT expansion in response to a high-fat diet (HFD). However, the molecular mechanisms involved in these effects mediated by miR-22 loss are unclear. METHODS AND RESULTS: Here, we show that miR-22 expression is induced during white, beige, and brown adipocyte differentiation in vitro. Deletion of miR-22 reduced white adipocyte differentiation in vitro. Loss of miR-22 prevented HFD-induced expression of adipogenic/lipogenic markers and adipocyte hypertrophy in murine WAT. In addition, deletion of miR-22 protected mice against HFD-induced mitochondrial dysfunction in WAT and BAT. Loss of miR-22 induced WAT browning. Gain- and loss-of-function studies revealed that miR-22 did not affect brown adipogenesis in vitro. Interestingly, miR-22 KO mice fed a HFD displayed increased expression of genes involved in thermogenesis and adrenergic signaling in BAT when compared to WT mice fed the same diet. CONCLUSIONS: Collectively, our findings suggest that loss of miR-22 attenuates fat accumulation in response to a HFD by reducing white adipocyte differentiation and increasing BAT activity, reinforcing miR-22 as a potential therapeutic target for obesity-related disorders.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , MicroRNAs/genética , Adipogenia/genética , Animais , Diferenciação Celular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Obesidade/genética , Obesidade/metabolismo
9.
Cell Metab ; 30(4): 656-673, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31447320

RESUMO

miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.


Assuntos
Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , MicroRNAs/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Tecido Adiposo/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Comunicação Celular , Linhagem Celular , Exossomos/metabolismo , Humanos , Camundongos , MicroRNAs/análise , Ratos
10.
PLoS One ; 14(6): e0217287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166980

RESUMO

IMPACT, a highly conserved protein, is an inhibitor of the eIF2α kinase GCN2. In mammals, it is preferentially expressed in neurons. Knock-down of IMPACT expression in neuronal cells increases basal GCN2 activation and eIF2α phosphorylation and decreases translation initiation. In the mouse brain, IMPACT is particularly abundant in the hypothalamus. Here we describe that the lack of IMPACT in mice affects hypothalamic functions. Impact-/- mice (Imp-KO) are viable and have no apparent major phenotypic defect. The hypothalamus in these animals shows increased levels of eIF2α phosphorylation, as expected from the described role of IMPACT in inhibiting GCN2 and from its abundance in this brain region. When fed a normal chow, animals lacking IMPACT weight slightly less than wild-type mice. When fed a high-fat diet, Imp-KO animals gain substantially less weight due to lower food intake when compared to wild-type mice. STAT3 signaling was depressed in Imp-KO animals even though leptin levels were identical to the wild-type mice. This finding supports the observation that Imp-KO mice have defective thermoregulation upon fasting. This phenotype was partially dependent on GCN2, whereas the lean phenotype was independent of GCN2. Taken together, our results indicate that IMPACT contributes to GCN2-dependent and -independent mechanisms involved in the regulation of autonomic functions in response to energy availability.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Regulação da Temperatura Corporal/genética , Gorduras na Dieta/farmacologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Hipotálamo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Proteínas Serina-Treonina Quinases/genética
11.
Nat Commun ; 10(1): 3412, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363081

RESUMO

Skeletal muscle insulin resistance, decreased phosphatidylinositol 3-kinase (PI3K) activation and altered mitochondrial function are hallmarks of type 2 diabetes. To determine the relationship between these abnormalities, we created mice with muscle-specific knockout of the p110α or p110ß catalytic subunits of PI3K. We find that mice with muscle-specific knockout of p110α, but not p110ß, display impaired insulin signaling and reduced muscle size due to enhanced proteasomal and autophagic activity. Despite insulin resistance and muscle atrophy, M-p110αKO mice show decreased serum myostatin, increased mitochondrial mass, increased mitochondrial fusion, and increased PGC1α expression, especially PCG1α2 and PCG1α3. This leads to enhanced mitochondrial oxidative capacity, increased muscle NADH content, and higher muscle free radical release measured in vivo using pMitoTimer reporter. Thus, p110α is the dominant catalytic isoform of PI3K in muscle in control of insulin sensitivity and muscle mass, and has a unique role in mitochondrial homeostasis in skeletal muscle.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Mitocôndrias/enzimologia , Músculo Esquelético/enzimologia , Animais , Classe I de Fosfatidilinositol 3-Quinases/genética , Homeostase , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
12.
Mol Metab ; 29: 124-135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31668384

RESUMO

OBJECTIVE: Dietary restriction (DR) improves health and prolongs lifespan in part by upregulating type III endoribonuclease DICER in adipose tissue. In this study, we aimed to specifically test which missing dietary component was responsible for DICER upregulation. METHODS: We performed a nutrient screen in mouse preadipocytes and validated the results in vivo using different kinds of dietary interventions in wild type or genetically modified mice and worms, also testing the requirement of DICER on the effects of the diets. RESULTS: We found that sulfur amino acid restriction (i.e., methionine or cysteine) is sufficient to increase Dicer mRNA expression in preadipocytes. Consistently, while DR increases DICER expression in adipose tissue of mice, this effect is blunted by supplementation of the diet with methionine, cysteine, or casein, but not with a lipid or carbohydrate source. Accordingly, dietary methionine or protein restriction mirrors the effects of DR. These changes are associated with alterations in serum adiponectin. We also found that DICER controls and is controlled by adiponectin. In mice, DICER plays a role in methionine restriction-induced upregulation of Ucp1 in adipose tissue. In C. elegans, DR and a model of methionine restriction also promote DICER expression in the intestine (an analog of the adipose tissue) and prolong lifespan in a DICER-dependent manner. CONCLUSIONS: We propose an evolutionary conserved mechanism in which dietary sulfur amino acid restriction upregulates DICER levels in adipose tissue leading to beneficial health effects.


Assuntos
Cisteína/deficiência , RNA Helicases DEAD-box/metabolismo , Metionina/deficiência , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Tecido Adiposo Bege/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Dieta/métodos , Dieta/veterinária , Mucosa Intestinal/metabolismo , Longevidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteína Desacopladora 1/metabolismo , Regulação para Cima
13.
Redox Biol ; 12: 82-102, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28214707

RESUMO

Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.


Assuntos
Tecido Adiposo/metabolismo , Doenças Metabólicas/metabolismo , Pequeno RNA não Traduzido/genética , Adipogenia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Doenças Metabólicas/genética , Fenótipo , Termogênese
14.
Aging (Albany NY) ; 8(6): 1201-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27241713

RESUMO

Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.


Assuntos
Tecido Adiposo Branco/metabolismo , Envelhecimento/metabolismo , RNA Helicases DEAD-box/metabolismo , Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Longevidade/genética , Ribonuclease III/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Envelhecimento/genética , Animais , RNA Helicases DEAD-box/genética , Metabolismo Energético/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metabolômica , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ribonuclease III/genética , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA