Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 615(7954): 892-899, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949190

RESUMO

The head direction (HD) system functions as the brain's internal compass1,2, classically formalized as a one-dimensional ring attractor network3,4. In contrast to a globally consistent magnetic compass, the HD system does not have a universal reference frame. Instead, it anchors to local cues, maintaining a stable offset when cues rotate5-8 and drifting in the absence of referents5,8-10. However, questions about the mechanisms that underlie anchoring and drift remain unresolved and are best addressed at the population level. For example, the extent to which the one-dimensional description of population activity holds under conditions of reorientation and drift is unclear. Here we performed population recordings of thalamic HD cells using calcium imaging during controlled rotations of a visual landmark. Across experiments, population activity varied along a second dimension, which we refer to as network gain, especially under circumstances of cue conflict and ambiguity. Activity along this dimension predicted realignment and drift dynamics, including the speed of network realignment. In the dark, network gain maintained a 'memory trace' of the previously displayed landmark. Further experiments demonstrated that the HD network returned to its baseline orientation after brief, but not longer, exposures to a rotated cue. This experience dependence suggests that memory of previous associations between HD neurons and allocentric cues is maintained and influences the internal HD representation. Building on these results, we show that continuous rotation of a visual landmark induced rotation of the HD representation that persisted in darkness, demonstrating experience-dependent recalibration of the HD system. Finally, we propose a computational model to formalize how the neural compass flexibly adapts to changing environmental cues to maintain a reliable representation of HD. These results challenge classical one-dimensional interpretations of the HD system and provide insights into the interactions between this system and the cues to which it anchors.


Assuntos
Sinais (Psicologia) , Cabeça , Neurônios , Orientação , Tálamo , Sinalização do Cálcio , Cabeça/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Orientação/fisiologia , Orientação Espacial/fisiologia , Rotação , Tálamo/citologia , Tálamo/fisiologia
3.
Cell Rep ; 43(8): 114590, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163200

RESUMO

The hippocampus and medial entorhinal cortex (MEC) form a cognitive map that facilitates spatial navigation. As part of this map, MEC grid cells fire in a repeating hexagonal pattern across an environment. This grid pattern relies on inputs from the medial septum (MS). The MS, and specifically GABAergic neurons, are essential for theta rhythm oscillations in the entorhinal-hippocampal network; however, the role of this population in grid cell function is unclear. To investigate this, we use optogenetics to inhibit MS-GABAergic neurons and observe that MS-GABAergic inhibition disrupts grid cell spatial periodicity. Grid cell spatial periodicity is disrupted during both optogenetic inhibition periods and short inter-stimulus intervals. In contrast, longer inter-stimulus intervals allow for the recovery of grid cell spatial firing. In addition, grid cell phase precession is also disrupted. These findings highlight the critical role of MS-GABAergic neurons in maintaining grid cell spatial and temporal coding in the MEC.


Assuntos
Córtex Entorrinal , Neurônios GABAérgicos , Células de Grade , Optogenética , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Animais , Córtex Entorrinal/fisiologia , Córtex Entorrinal/metabolismo , Córtex Entorrinal/citologia , Células de Grade/fisiologia , Camundongos , Masculino , Ritmo Teta/fisiologia , Núcleos Septais/fisiologia , Núcleos Septais/metabolismo
4.
Neuron ; 111(15): 2275-2277, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37536286

RESUMO

In this issue of Neuron, Khatib et al.1 and Geva et al.2 present complementary and breakthrough discoveries demonstrating that elapsed time and active experience independently affect unique aspects of representational drift in the hippocampus.


Assuntos
Hipocampo , Neurônios , Hipocampo/fisiologia
5.
Curr Biol ; 33(12): 2425-2437.e5, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37220744

RESUMO

Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer's disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aß) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.


Assuntos
Doença de Alzheimer , Sinais (Psicologia) , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Camundongos Transgênicos , Modelos Animais de Doenças , Córtex Entorrinal , Potenciais de Ação
6.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986986

RESUMO

The hippocampus and medial entorhinal cortex (MEC) form a cognitive map that facilitates spatial navigation. As part of this map, MEC grid cells fire in a repeating hexagonal pattern across an environment. This grid pattern relies on inputs from the medial septum (MS). The MS, and specifically its GABAergic neurons, are essential for theta rhythm oscillations in the entorhinal-hippocampal network, however, it is unknown if this subpopulation is also essential for grid cell function. To investigate this, we used optogenetics to inhibit MS-GABAergic neurons during grid cell recordings. We found that MS-GABAergic inhibition disrupted grid cell spatial periodicity both during optogenetic inhibition and during short 30-second recovery periods. Longer recovery periods of 60 seconds between the optogenetic inhibition periods allowed for the recovery of grid cell spatial firing. Grid cell temporal coding was also disrupted, as observed by a significant attenuation of theta phase precession. Together, these results demonstrate that MS-GABAergic neurons are critical for grid cell spatial and temporal coding in the MEC.

7.
Hippocampus ; 22(3): 604-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21509854

RESUMO

During slow-wave sleep (SWS) and rapid eye movement (REM) sleep, hippocampal place cells in the rat show replay of sequences previously observed during waking. We tested the hypothesis from computational modeling that the temporal structure of REM sleep replay could arise from an interplay of place cells with head direction cells in the postsubiculum. Physiological single-unit recording was performed simultaneously from five or more head direction or place by head direction cells in the postsubiculum during running on a circular track allowing sampling of a full range of head directions, and during sleep periods before and after running on the circular track. Data analysis compared the spiking activity during individual REM periods with waking as in previous analysis procedures for REM sleep. We also used a new procedure comparing groups of similar runs during waking with REM sleep periods. There was no consistent evidence for a statistically significant correlation of the temporal structure of spiking during REM sleep with spiking during waking running periods. Thus, the spiking activity of head direction cells during REM sleep does not show replay of head direction cell activity occurring during a previous waking period of running on the task. In addition, we compared the spiking of postsubiculum neurons during hippocampal sharp wave ripple events. We show that head direction cells are not activated during sharp wave ripples, whereas neurons responsive to place in the postsubiculum show reliable spiking at ripple events.


Assuntos
Movimentos da Cabeça/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Potenciais de Ação/fisiologia , Animais , Masculino , Orientação/fisiologia , Ratos , Ratos Long-Evans , Sono REM/fisiologia , Vigília/fisiologia
8.
Nat Commun ; 13(1): 2415, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504915

RESUMO

The hippocampus is thought to mediate episodic memory through the instantiation and reinstatement of context-specific cognitive maps. However, recent longitudinal experiments have challenged this view, reporting that most hippocampal cells change their tuning properties over days even in the same environment. Often referred to as neural or representational drift, these dynamics raise questions about the capacity and content of the hippocampal code. One such question is whether and how these long-term dynamics impact the hippocampal code for context. To address this, we image large CA1 populations over more than a month of daily experience as freely behaving mice participate in an extended geometric morph paradigm. We find that long-timescale changes in population activity occur orthogonally to the representation of context in network space, allowing for consistent readout of contextual information across weeks. This population-level structure is supported by heterogeneous patterns of activity at the level of individual cells, where we observe evidence of a positive relationship between interpretable contextual coding and long-term stability. Together, these results demonstrate that long-timescale changes to the CA1 spatial code preserve the relative structure of contextual representation.


Assuntos
Hipocampo , Memória Episódica , Animais , Camundongos
9.
Nat Commun ; 13(1): 886, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173173

RESUMO

Early-onset familial Alzheimer's disease (AD) is marked by an aggressive buildup of amyloid beta (Aß) proteins, yet the neural circuit operations impacted during the initial stages of Aß pathogenesis remain elusive. Here, we report a coding impairment of the medial entorhinal cortex (MEC) grid cell network in the J20 transgenic mouse model of familial AD that over-expresses Aß throughout the hippocampus and entorhinal cortex. Grid cells showed reduced spatial periodicity, spatial stability, and synchrony with interneurons and head-direction cells. In contrast, the spatial coding of non-grid cells within the MEC, and place cells within the hippocampus, remained intact. Grid cell deficits emerged at the earliest incidence of Aß fibril deposition and coincided with impaired spatial memory performance in a path integration task. These results demonstrate that widespread Aß-mediated damage to the entorhinal-hippocampal circuit results in an early impairment of the entorhinal grid cell network.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Córtex Entorrinal/patologia , Células de Grade/patologia , Hipocampo/patologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais , Memória Espacial/fisiologia
10.
Elife ; 102021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34647521

RESUMO

Envisioning the future is intuitively linked to our ability to remember the past. Within the memory system, substantial work has demonstrated the involvement of the prefrontal cortex and the hippocampus in representing the past and present. Recent data shows that both the prefrontal cortex and the hippocampus encode future trajectories, which are segregated in time by alternating cycles of the theta rhythm. Here, we discuss how information is temporally organized by these brain regions supported by the medial septum, nucleus reuniens, and parahippocampal regions. Finally, we highlight a brain circuit that we predict is essential for the temporal segregation of future scenarios.


Assuntos
Encéfalo/fisiologia , Memória , Ritmo Teta , Animais , Antecipação Psicológica , Hipocampo/fisiologia , Humanos , Imaginação , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Fatores de Tempo
11.
Front Neural Circuits ; 15: 653116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421547

RESUMO

Circuit interactions within the medial entorhinal cortex (MEC) translate movement into a coherent code for spatial location. Entorhinal principal cells are subject to strong lateral inhibition, suggesting that a disinhibitory mechanism may drive their activation. Cortical Vasoactive Intestinal Peptide (VIP) expressing inhibitory neurons are known to contact other interneurons and excitatory cells and are thus capable of providing a local disinhibitory mechanism, yet little is known about this cell type in the MEC. To investigate the electrophysiological and morphological properties of VIP cells in the MEC, we use in vitro whole-cell patch-clamp recordings in VIPcre/tdTom mice. We report several gradients in electrophysiological properties of VIP cells that differ across laminae and along the dorsal-ventral MEC axis. We additionally show that VIP cells have distinct morphological features across laminae. Together, these results characterize the cellular and morphological properties of VIP cells in the MEC.


Assuntos
Córtex Entorrinal , Peptídeo Intestinal Vasoativo , Potenciais de Ação , Animais , Interneurônios/metabolismo , Camundongos , Técnicas de Patch-Clamp , Peptídeo Intestinal Vasoativo/metabolismo
12.
Genes Brain Behav ; 20(1): e12686, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32691490

RESUMO

Understanding the rules that govern neuronal dynamics throughout the brain to subserve behavior and cognition remains one of the biggest challenges in neuroscience research. Recent technical advances enable the recording of increasingly larger neuronal populations to produce increasingly more sophisticated datasets. Despite bold and important open-science and data-sharing policies, these datasets tend to include unique data acquisition methods, behaviors, and file structures. Discrepancies between experimental protocols present key challenges in comparing data between laboratories and across different brain regions and species. Here, we discuss our recent efforts to create a standardized and high-throughput research platform to address these issues. The McGill-Mouse-Miniscope (M3) platform is an initiative to combine miniscope calcium imaging with standardized touchscreen-based animal behavioral testing. The goal is to curate an open-source and standardized framework for acquiring, analyzing, and accessing high-quality data of the neuronal dynamics that underly cognition throughout the brain in mice, marmosets, and models of disease. We end with a discussion of future developments and a call for users to adopt this standardized approach.


Assuntos
Pesquisa Comportamental/instrumentação , Encéfalo/fisiologia , Interface Usuário-Computador , Animais , Pesquisa Comportamental/métodos , Encéfalo/citologia , Encéfalo/metabolismo , Cálcio/metabolismo , Cognição , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Camundongos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neurônios/metabolismo , Neurônios/fisiologia
13.
Nat Commun ; 11(1): 3026, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541860

RESUMO

Survival in complex environments necessitates a flexible navigation system that incorporates memory of recent behavior and associations. Yet, how the hippocampal spatial circuit represents latent information independent of sensory inputs and future goals has not been determined. To address this, we image the activity of large ensembles in subregion CA1 via wide-field fluorescent microscopy during a novel behavioral paradigm. Our results demonstrate that latent information is represented through reliable firing rate changes during unconstrained navigation. We then hypothesize that the representation of latent information in CA1 is mediated by pattern separation/completion processes instantiated upstream within the dentate gyrus (DG) and CA3 subregions. Indeed, CA3 ensemble recordings reveal an analogous code for latent information. Moreover, selective chemogenetic inactivation of DG-CA3 circuitry completely and reversibly abolishes the CA1 representation of latent information. These results reveal a causal and specific role of DG-CA3 circuitry in the maintenance of latent information within the hippocampus.


Assuntos
Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Masculino , Memória , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Reconhecimento Fisiológico de Modelo
14.
J Clin Invest ; 130(12): 6616-6630, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164988

RESUMO

Dysregulation of habit formation has been recently proposed as pivotal to eating disorders. Here, we report that a subset of patients suffering from restrictive anorexia nervosa have enhanced habit formation compared with healthy controls. Habit formation is modulated by striatal cholinergic interneurons. These interneurons express vesicular transporters for acetylcholine (VAChT) and glutamate (VGLUT3) and use acetylcholine/glutamate cotransmission to regulate striatal functions. Using mice with genetically silenced VAChT (VAChT conditional KO, VAChTcKO) or VGLUT3 (VGLUT3cKO), we investigated the roles that acetylcholine and glutamate released by cholinergic interneurons play in habit formation and maladaptive eating. Silencing glutamate favored goal-directed behaviors and had no impact on eating behavior. In contrast, VAChTcKO mice were more prone to habits and maladaptive eating. Specific deletion of VAChT in the dorsomedial striatum of adult mice was sufficient to phenocopy maladaptive eating behaviors of VAChTcKO mice. Interestingly, VAChTcKO mice had reduced dopamine release in the dorsomedial striatum but not in the dorsolateral striatum. The dysfunctional eating behavior of VAChTcKO mice was alleviated by donepezil and by l-DOPA, confirming an acetylcholine/dopamine deficit. Our study reveals that loss of acetylcholine leads to a dopamine imbalance in striatal compartments, thereby promoting habits and vulnerability to maladaptive eating in mice.


Assuntos
Acetilcolina/metabolismo , Corpo Estriado , Transtornos da Alimentação e da Ingestão de Alimentos/metabolismo , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Adulto , Animais , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Donepezila/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Transtornos da Alimentação e da Ingestão de Alimentos/tratamento farmacológico , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Feminino , Humanos , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
15.
Neural Plast ; 2008: 658323, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18670635

RESUMO

The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.


Assuntos
Córtex Entorrinal/fisiologia , Potenciais da Membrana/fisiologia , Memória/fisiologia , Células Piramidais/fisiologia , Comportamento Espacial/fisiologia , Potenciais de Ação , Animais , Relógios Biológicos , Comportamento Exploratório/fisiologia , Haplorrinos , Hipocampo/fisiologia , Humanos , Periodicidade , Estimulação Luminosa , Ratos , Reforço Psicológico , Ritmo Teta
16.
Curr Biol ; 28(8): 1179-1188.e3, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29628373

RESUMO

Biological oscillations can be controlled by a small population of rhythmic pacemaker cells, or in the brain, they also can emerge from complex cellular and circuit-level interactions. Whether and how these mechanisms are combined to give rise to oscillatory patterns that govern cognitive function are not well understood. For example, the activity of hippocampal networks is temporally coordinated by a 7- to 9-Hz local field potential (LFP) theta rhythm, yet many individual cells decouple from the LFP frequency to oscillate at frequencies ∼1 Hz higher. To better understand the network interactions that produce these complex oscillatory patterns, we asked whether the relative frequency difference between LFP and individual cells is retained when the LFP frequency is perturbed experimentally. We found that rhythmic optogenetic stimulation of medial septal GABAergic neurons controlled the hippocampal LFP frequency outside of the endogenous theta range, even during behavioral states when endogenous mechanisms would otherwise have generated 7- to 9-Hz theta oscillations. While the LFP frequency matched the optogenetically induced stimulation frequency, the oscillation frequency of individual hippocampal cells remained broadly distributed, and in a subset of cells including interneurons, it was accelerated beyond the new base LFP frequency. The inputs from septal GABAergic neurons to the hippocampus, therefore, do not appear to directly control the cellular oscillation frequency but rather engage cellular and circuit mechanisms that accelerate the rhythmicity of individual cells. Thus, theta oscillations are an example of cortical oscillations that combine inputs from a subcortical pacemaker with local computations to generate complex oscillatory patterns that support cognitive functions.


Assuntos
Hipocampo/fisiologia , Interneurônios/fisiologia , Ritmo Teta/fisiologia , Animais , Neurônios GABAérgicos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/fisiologia , Optogenética/métodos , Células Piramidais/fisiologia , Lobo Temporal
17.
Neuron ; 91(3): 666-79, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27427460

RESUMO

Grid cells in medial entorhinal cortex (MEC) can be modeled using oscillatory interference or attractor dynamic mechanisms that perform path integration, a computation requiring information about running direction and speed. The two classes of computational models often use either an oscillatory frequency or a firing rate that increases as a function of running speed. Yet it is currently not known whether these are two manifestations of the same speed signal or dissociable signals with potentially different anatomical substrates. We examined coding of running speed in MEC and identified these two speed signals to be independent of each other within individual neurons. The medial septum (MS) is strongly linked to locomotor behavior, and removal of MS input resulted in strengthening of the firing rate speed signal, while decreasing the strength of the oscillatory speed signal. Thus, two speed signals are present in MEC that are differentially affected by disrupted MS input.


Assuntos
Córtex Entorrinal/fisiologia , Corrida/fisiologia , Núcleos Septais/fisiologia , Ritmo Teta/fisiologia , Velocidade de Caminhada/fisiologia , Potenciais de Ação/fisiologia , Animais , Masculino , Modelos Neurológicos , Ratos
18.
Brain Res ; 1621: 355-67, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25451111

RESUMO

The spatial firing pattern of entorhinal grid cells may be important for navigation. Many different computational models of grid cell firing use path integration based on movement direction and the associated movement speed to drive grid cells. However, the response of neurons to movement direction has rarely been tested, in contrast to multiple studies showing responses of neurons to head direction. Here, we analyzed the difference between head direction and movement direction during rat movement and analyzed cells recorded from entorhinal cortex for their tuning to movement direction. During foraging behavior, movement direction differs significantly from head direction. The analysis of neuron responses shows that only 5 out of 758 medial entorhinal cells show significant coding for both movement direction and head direction when evaluating periods of rat behavior with speeds above 10 cm/s and ±30° angular difference between movement and head direction. None of the cells coded movement direction alone. In contrast, 21 cells in this population coded only head direction during behavioral epochs with these constraints, indicating much stronger coding of head direction in this population. This suggests that the movement direction signal required by most grid cell models may arise from other brain structures than the medial entorhinal cortex. This article is part of a Special Issue entitled SI: Brain and Memory.


Assuntos
Córtex Entorrinal/fisiologia , Cabeça/fisiologia , Movimento , Neurônios/fisiologia , Navegação Espacial/fisiologia , Animais , Masculino , Modelos Neurológicos , Ratos , Ratos Long-Evans
19.
Nat Neurosci ; 18(8): 1123-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26120964

RESUMO

The superficial layers of the medial entorhinal cortex (MEC) are a major input to the hippocampus. The high proportion of spatially modulated cells, including grid cells and border cells, in these layers suggests that MEC inputs are critical for the representation of space in the hippocampus. However, selective manipulations of the MEC do not completely abolish hippocampal spatial firing. To determine whether other hippocampal firing characteristics depend more critically on MEC inputs, we recorded from hippocampal CA1 cells in rats with MEC lesions. Theta phase precession was substantially disrupted, even during periods of stable spatial firing. Our findings indicate that MEC inputs to the hippocampus are required for the temporal organization of hippocampal firing patterns and suggest that cognitive functions that depend on precise neuronal sequences in the hippocampal theta cycle are particularly dependent on the MEC.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Córtex Entorrinal/fisiopatologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Ritmo Teta/fisiologia , Animais , Comportamento Animal , Região CA1 Hipocampal/citologia , Córtex Entorrinal/patologia , Masculino , Vias Neurais , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans
20.
Neuron ; 88(3): 578-89, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26539893

RESUMO

The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location, but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience.


Assuntos
Potenciais de Ação/fisiologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Teste de Esforço/métodos , Corrida/fisiologia , Animais , Eletrodos Implantados , Masculino , Ratos , Ratos Long-Evans , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA